numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slaebz.f | 22366B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
*> \brief \b SLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAEBZ + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaebz.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaebz.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaebz.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, * RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, * NAB, WORK, IWORK, INFO ) * * .. Scalar Arguments .. * INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX * REAL ABSTOL, PIVMIN, RELTOL * .. * .. Array Arguments .. * INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * ) * REAL AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAEBZ contains the iteration loops which compute and use the *> function N(w), which is the count of eigenvalues of a symmetric *> tridiagonal matrix T less than or equal to its argument w. It *> performs a choice of two types of loops: *> *> IJOB=1, followed by *> IJOB=2: It takes as input a list of intervals and returns a list of *> sufficiently small intervals whose union contains the same *> eigenvalues as the union of the original intervals. *> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. *> The output interval (AB(j,1),AB(j,2)] will contain *> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. *> *> IJOB=3: It performs a binary search in each input interval *> (AB(j,1),AB(j,2)] for a point w(j) such that *> N(w(j))=NVAL(j), and uses C(j) as the starting point of *> the search. If such a w(j) is found, then on output *> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output *> (AB(j,1),AB(j,2)] will be a small interval containing the *> point where N(w) jumps through NVAL(j), unless that point *> lies outside the initial interval. *> *> Note that the intervals are in all cases half-open intervals, *> i.e., of the form (a,b] , which includes b but not a . *> *> To avoid underflow, the matrix should be scaled so that its largest *> element is no greater than overflow**(1/2) * underflow**(1/4) *> in absolute value. To assure the most accurate computation *> of small eigenvalues, the matrix should be scaled to be *> not much smaller than that, either. *> *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal *> Matrix", Report CS41, Computer Science Dept., Stanford *> University, July 21, 1966 *> *> Note: the arguments are, in general, *not* checked for unreasonable *> values. *> \endverbatim * * Arguments: * ========== * *> \param[in] IJOB *> \verbatim *> IJOB is INTEGER *> Specifies what is to be done: *> = 1: Compute NAB for the initial intervals. *> = 2: Perform bisection iteration to find eigenvalues of T. *> = 3: Perform bisection iteration to invert N(w), i.e., *> to find a point which has a specified number of *> eigenvalues of T to its left. *> Other values will cause SLAEBZ to return with INFO=-1. *> \endverbatim *> *> \param[in] NITMAX *> \verbatim *> NITMAX is INTEGER *> The maximum number of "levels" of bisection to be *> performed, i.e., an interval of width W will not be made *> smaller than 2^(-NITMAX) * W. If not all intervals *> have converged after NITMAX iterations, then INFO is set *> to the number of non-converged intervals. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension n of the tridiagonal matrix T. It must be at *> least 1. *> \endverbatim *> *> \param[in] MMAX *> \verbatim *> MMAX is INTEGER *> The maximum number of intervals. If more than MMAX intervals *> are generated, then SLAEBZ will quit with INFO=MMAX+1. *> \endverbatim *> *> \param[in] MINP *> \verbatim *> MINP is INTEGER *> The initial number of intervals. It may not be greater than *> MMAX. *> \endverbatim *> *> \param[in] NBMIN *> \verbatim *> NBMIN is INTEGER *> The smallest number of intervals that should be processed *> using a vector loop. If zero, then only the scalar loop *> will be used. *> \endverbatim *> *> \param[in] ABSTOL *> \verbatim *> ABSTOL is REAL *> The minimum (absolute) width of an interval. When an *> interval is narrower than ABSTOL, or than RELTOL times the *> larger (in magnitude) endpoint, then it is considered to be *> sufficiently small, i.e., converged. This must be at least *> zero. *> \endverbatim *> *> \param[in] RELTOL *> \verbatim *> RELTOL is REAL *> The minimum relative width of an interval. When an interval *> is narrower than ABSTOL, or than RELTOL times the larger (in *> magnitude) endpoint, then it is considered to be *> sufficiently small, i.e., converged. Note: this should *> always be at least radix*machine epsilon. *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is REAL *> The minimum absolute value of a "pivot" in the Sturm *> sequence loop. *> This must be at least max |e(j)**2|*safe_min and at *> least safe_min, where safe_min is at least *> the smallest number that can divide one without overflow. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] E *> \verbatim *> E is REAL array, dimension (N) *> The offdiagonal elements of the tridiagonal matrix T in *> positions 1 through N-1. E(N) is arbitrary. *> \endverbatim *> *> \param[in] E2 *> \verbatim *> E2 is REAL array, dimension (N) *> The squares of the offdiagonal elements of the tridiagonal *> matrix T. E2(N) is ignored. *> \endverbatim *> *> \param[in,out] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (MINP) *> If IJOB=1 or 2, not referenced. *> If IJOB=3, the desired values of N(w). The elements of NVAL *> will be reordered to correspond with the intervals in AB. *> Thus, NVAL(j) on output will not, in general be the same as *> NVAL(j) on input, but it will correspond with the interval *> (AB(j,1),AB(j,2)] on output. *> \endverbatim *> *> \param[in,out] AB *> \verbatim *> AB is REAL array, dimension (MMAX,2) *> The endpoints of the intervals. AB(j,1) is a(j), the left *> endpoint of the j-th interval, and AB(j,2) is b(j), the *> right endpoint of the j-th interval. The input intervals *> will, in general, be modified, split, and reordered by the *> calculation. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is REAL array, dimension (MMAX) *> If IJOB=1, ignored. *> If IJOB=2, workspace. *> If IJOB=3, then on input C(j) should be initialized to the *> first search point in the binary search. *> \endverbatim *> *> \param[out] MOUT *> \verbatim *> MOUT is INTEGER *> If IJOB=1, the number of eigenvalues in the intervals. *> If IJOB=2 or 3, the number of intervals output. *> If IJOB=3, MOUT will equal MINP. *> \endverbatim *> *> \param[in,out] NAB *> \verbatim *> NAB is INTEGER array, dimension (MMAX,2) *> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). *> If IJOB=2, then on input, NAB(i,j) should be set. It must *> satisfy the condition: *> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), *> which means that in interval i only eigenvalues *> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, *> NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with *> IJOB=1. *> On output, NAB(i,j) will contain *> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of *> the input interval that the output interval *> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the *> the input values of NAB(k,1) and NAB(k,2). *> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), *> unless N(w) > NVAL(i) for all search points w , in which *> case NAB(i,1) will not be modified, i.e., the output *> value will be the same as the input value (modulo *> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) *> for all search points w , in which case NAB(i,2) will *> not be modified. Normally, NAB should be set to some *> distinctive value(s) before SLAEBZ is called. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MMAX) *> Workspace. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MMAX) *> Workspace. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: All intervals converged. *> = 1--MMAX: The last INFO intervals did not converge. *> = MMAX+1: More than MMAX intervals were generated. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laebz * *> \par Further Details: * ===================== *> *> \verbatim *> *> This routine is intended to be called only by other LAPACK *> routines, thus the interface is less user-friendly. It is intended *> for two purposes: *> *> (a) finding eigenvalues. In this case, SLAEBZ should have one or *> more initial intervals set up in AB, and SLAEBZ should be called *> with IJOB=1. This sets up NAB, and also counts the eigenvalues. *> Intervals with no eigenvalues would usually be thrown out at *> this point. Also, if not all the eigenvalues in an interval i *> are desired, NAB(i,1) can be increased or NAB(i,2) decreased. *> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest *> eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX *> no smaller than the value of MOUT returned by the call with *> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 *> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the *> tolerance specified by ABSTOL and RELTOL. *> *> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). *> In this case, start with a Gershgorin interval (a,b). Set up *> AB to contain 2 search intervals, both initially (a,b). One *> NVAL element should contain f-1 and the other should contain l *> , while C should contain a and b, resp. NAB(i,1) should be -1 *> and NAB(i,2) should be N+1, to flag an error if the desired *> interval does not lie in (a,b). SLAEBZ is then called with *> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- *> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while *> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r *> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and *> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and *> w(l-r)=...=w(l+k) are handled similarly. *> \endverbatim *> * ===================================================================== SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL, $ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT, $ NAB, WORK, IWORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX REAL ABSTOL, PIVMIN, RELTOL * .. * .. Array Arguments .. INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * ) REAL AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, TWO, HALF PARAMETER ( ZERO = 0.0E0, TWO = 2.0E0, $ HALF = 1.0E0 / TWO ) * .. * .. Local Scalars .. INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL, $ KLNEW REAL TMP1, TMP2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * * Check for Errors * INFO = 0 IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN INFO = -1 RETURN END IF * * Initialize NAB * IF( IJOB.EQ.1 ) THEN * * Compute the number of eigenvalues in the initial intervals. * MOUT = 0 DO 30 JI = 1, MINP DO 20 JP = 1, 2 TMP1 = D( 1 ) - AB( JI, JP ) IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN NAB( JI, JP ) = 0 IF( TMP1.LE.ZERO ) $ NAB( JI, JP ) = 1 * DO 10 J = 2, N TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP ) IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN IF( TMP1.LE.ZERO ) $ NAB( JI, JP ) = NAB( JI, JP ) + 1 10 CONTINUE 20 CONTINUE MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 ) 30 CONTINUE RETURN END IF * * Initialize for loop * * KF and KL have the following meaning: * Intervals 1,...,KF-1 have converged. * Intervals KF,...,KL still need to be refined. * KF = 1 KL = MINP * * If IJOB=2, initialize C. * If IJOB=3, use the user-supplied starting point. * IF( IJOB.EQ.2 ) THEN DO 40 JI = 1, MINP C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) ) 40 CONTINUE END IF * * Iteration loop * DO 130 JIT = 1, NITMAX * * Loop over intervals * IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN * * Begin of Parallel Version of the loop * DO 60 JI = KF, KL * * Compute N(c), the number of eigenvalues less than c * WORK( JI ) = D( 1 ) - C( JI ) IWORK( JI ) = 0 IF( WORK( JI ).LE.PIVMIN ) THEN IWORK( JI ) = 1 WORK( JI ) = MIN( WORK( JI ), -PIVMIN ) END IF * DO 50 J = 2, N WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI ) IF( WORK( JI ).LE.PIVMIN ) THEN IWORK( JI ) = IWORK( JI ) + 1 WORK( JI ) = MIN( WORK( JI ), -PIVMIN ) END IF 50 CONTINUE 60 CONTINUE * IF( IJOB.LE.2 ) THEN * * IJOB=2: Choose all intervals containing eigenvalues. * KLNEW = KL DO 70 JI = KF, KL * * Insure that N(w) is monotone * IWORK( JI ) = MIN( NAB( JI, 2 ), $ MAX( NAB( JI, 1 ), IWORK( JI ) ) ) * * Update the Queue -- add intervals if both halves * contain eigenvalues. * IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN * * No eigenvalue in the upper interval: * just use the lower interval. * AB( JI, 2 ) = C( JI ) * ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN * * No eigenvalue in the lower interval: * just use the upper interval. * AB( JI, 1 ) = C( JI ) ELSE KLNEW = KLNEW + 1 IF( KLNEW.LE.MMAX ) THEN * * Eigenvalue in both intervals -- add upper to * queue. * AB( KLNEW, 2 ) = AB( JI, 2 ) NAB( KLNEW, 2 ) = NAB( JI, 2 ) AB( KLNEW, 1 ) = C( JI ) NAB( KLNEW, 1 ) = IWORK( JI ) AB( JI, 2 ) = C( JI ) NAB( JI, 2 ) = IWORK( JI ) ELSE INFO = MMAX + 1 END IF END IF 70 CONTINUE IF( INFO.NE.0 ) $ RETURN KL = KLNEW ELSE * * IJOB=3: Binary search. Keep only the interval containing * w s.t. N(w) = NVAL * DO 80 JI = KF, KL IF( IWORK( JI ).LE.NVAL( JI ) ) THEN AB( JI, 1 ) = C( JI ) NAB( JI, 1 ) = IWORK( JI ) END IF IF( IWORK( JI ).GE.NVAL( JI ) ) THEN AB( JI, 2 ) = C( JI ) NAB( JI, 2 ) = IWORK( JI ) END IF 80 CONTINUE END IF * ELSE * * End of Parallel Version of the loop * * Begin of Serial Version of the loop * KLNEW = KL DO 100 JI = KF, KL * * Compute N(w), the number of eigenvalues less than w * TMP1 = C( JI ) TMP2 = D( 1 ) - TMP1 ITMP1 = 0 IF( TMP2.LE.PIVMIN ) THEN ITMP1 = 1 TMP2 = MIN( TMP2, -PIVMIN ) END IF * DO 90 J = 2, N TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1 IF( TMP2.LE.PIVMIN ) THEN ITMP1 = ITMP1 + 1 TMP2 = MIN( TMP2, -PIVMIN ) END IF 90 CONTINUE * IF( IJOB.LE.2 ) THEN * * IJOB=2: Choose all intervals containing eigenvalues. * * Insure that N(w) is monotone * ITMP1 = MIN( NAB( JI, 2 ), $ MAX( NAB( JI, 1 ), ITMP1 ) ) * * Update the Queue -- add intervals if both halves * contain eigenvalues. * IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN * * No eigenvalue in the upper interval: * just use the lower interval. * AB( JI, 2 ) = TMP1 * ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN * * No eigenvalue in the lower interval: * just use the upper interval. * AB( JI, 1 ) = TMP1 ELSE IF( KLNEW.LT.MMAX ) THEN * * Eigenvalue in both intervals -- add upper to queue. * KLNEW = KLNEW + 1 AB( KLNEW, 2 ) = AB( JI, 2 ) NAB( KLNEW, 2 ) = NAB( JI, 2 ) AB( KLNEW, 1 ) = TMP1 NAB( KLNEW, 1 ) = ITMP1 AB( JI, 2 ) = TMP1 NAB( JI, 2 ) = ITMP1 ELSE INFO = MMAX + 1 RETURN END IF ELSE * * IJOB=3: Binary search. Keep only the interval * containing w s.t. N(w) = NVAL * IF( ITMP1.LE.NVAL( JI ) ) THEN AB( JI, 1 ) = TMP1 NAB( JI, 1 ) = ITMP1 END IF IF( ITMP1.GE.NVAL( JI ) ) THEN AB( JI, 2 ) = TMP1 NAB( JI, 2 ) = ITMP1 END IF END IF 100 CONTINUE KL = KLNEW * END IF * * Check for convergence * KFNEW = KF DO 110 JI = KF, KL TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) ) TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) ) IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR. $ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN * * Converged -- Swap with position KFNEW, * then increment KFNEW * IF( JI.GT.KFNEW ) THEN TMP1 = AB( JI, 1 ) TMP2 = AB( JI, 2 ) ITMP1 = NAB( JI, 1 ) ITMP2 = NAB( JI, 2 ) AB( JI, 1 ) = AB( KFNEW, 1 ) AB( JI, 2 ) = AB( KFNEW, 2 ) NAB( JI, 1 ) = NAB( KFNEW, 1 ) NAB( JI, 2 ) = NAB( KFNEW, 2 ) AB( KFNEW, 1 ) = TMP1 AB( KFNEW, 2 ) = TMP2 NAB( KFNEW, 1 ) = ITMP1 NAB( KFNEW, 2 ) = ITMP2 IF( IJOB.EQ.3 ) THEN ITMP1 = NVAL( JI ) NVAL( JI ) = NVAL( KFNEW ) NVAL( KFNEW ) = ITMP1 END IF END IF KFNEW = KFNEW + 1 END IF 110 CONTINUE KF = KFNEW * * Choose Midpoints * DO 120 JI = KF, KL C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) ) 120 CONTINUE * * If no more intervals to refine, quit. * IF( KF.GT.KL ) $ GO TO 140 130 CONTINUE * * Converged * 140 CONTINUE INFO = MAX( KL+1-KF, 0 ) MOUT = KL * RETURN * * End of SLAEBZ * END