numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slaed1.f | 8428B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
*> \brief \b SLAED1 used by SSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAED1 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed1.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed1.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed1.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK, * INFO ) * * .. Scalar Arguments .. * INTEGER CUTPNT, INFO, LDQ, N * REAL RHO * .. * .. Array Arguments .. * INTEGER INDXQ( * ), IWORK( * ) * REAL D( * ), Q( LDQ, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAED1 computes the updated eigensystem of a diagonal *> matrix after modification by a rank-one symmetric matrix. This *> routine is used only for the eigenproblem which requires all *> eigenvalues and eigenvectors of a tridiagonal matrix. SLAED7 handles *> the case in which eigenvalues only or eigenvalues and eigenvectors *> of a full symmetric matrix (which was reduced to tridiagonal form) *> are desired. *> *> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) *> *> where Z = Q**T*u, u is a vector of length N with ones in the *> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. *> *> The eigenvectors of the original matrix are stored in Q, and the *> eigenvalues are in D. The algorithm consists of three stages: *> *> The first stage consists of deflating the size of the problem *> when there are multiple eigenvalues or if there is a zero in *> the Z vector. For each such occurrence the dimension of the *> secular equation problem is reduced by one. This stage is *> performed by the routine SLAED2. *> *> The second stage consists of calculating the updated *> eigenvalues. This is done by finding the roots of the secular *> equation via the routine SLAED4 (as called by SLAED3). *> This routine also calculates the eigenvectors of the current *> problem. *> *> The final stage consists of computing the updated eigenvectors *> directly using the updated eigenvalues. The eigenvectors for *> the current problem are multiplied with the eigenvectors from *> the overall problem. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of the symmetric tridiagonal matrix. N >= 0. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is REAL array, dimension (N) *> On entry, the eigenvalues of the rank-1-perturbed matrix. *> On exit, the eigenvalues of the repaired matrix. *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is REAL array, dimension (LDQ,N) *> On entry, the eigenvectors of the rank-1-perturbed matrix. *> On exit, the eigenvectors of the repaired tridiagonal matrix. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,N). *> \endverbatim *> *> \param[in,out] INDXQ *> \verbatim *> INDXQ is INTEGER array, dimension (N) *> On entry, the permutation which separately sorts the two *> subproblems in D into ascending order. *> On exit, the permutation which will reintegrate the *> subproblems back into sorted order, *> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order. *> \endverbatim *> *> \param[in] RHO *> \verbatim *> RHO is REAL *> The subdiagonal entry used to create the rank-1 modification. *> \endverbatim *> *> \param[in] CUTPNT *> \verbatim *> CUTPNT is INTEGER *> The location of the last eigenvalue in the leading sub-matrix. *> min(1,N) <= CUTPNT <= N/2. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (4*N + N**2) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (4*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, an eigenvalue did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laed1 * *> \par Contributors: * ================== *> *> Jeff Rutter, Computer Science Division, University of California *> at Berkeley, USA \n *> Modified by Francoise Tisseur, University of Tennessee *> * ===================================================================== SUBROUTINE SLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, $ IWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER CUTPNT, INFO, LDQ, N REAL RHO * .. * .. Array Arguments .. INTEGER INDXQ( * ), IWORK( * ) REAL D( * ), Q( LDQ, * ), WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP, $ IQ2, IS, IW, IZ, K, N1, N2 * .. * .. External Subroutines .. EXTERNAL SCOPY, SLAED2, SLAED3, SLAMRG, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED1', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * The following values are integer pointers which indicate * the portion of the workspace * used by a particular array in SLAED2 and SLAED3. * IZ = 1 IDLMDA = IZ + N IW = IDLMDA + N IQ2 = IW + N * INDX = 1 INDXC = INDX + N COLTYP = INDXC + N INDXP = COLTYP + N * * * Form the z-vector which consists of the last row of Q_1 and the * first row of Q_2. * CALL SCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 ) CPP1 = CUTPNT + 1 CALL SCOPY( N-CUTPNT, Q( CPP1, CPP1 ), LDQ, WORK( IZ+CUTPNT ), $ 1 ) * * Deflate eigenvalues. * CALL SLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ), $ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ), $ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ), $ IWORK( COLTYP ), INFO ) * IF( INFO.NE.0 ) $ GO TO 20 * * Solve Secular Equation. * IF( K.NE.0 ) THEN IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT + $ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2 CALL SLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ), $ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ), $ WORK( IW ), WORK( IS ), INFO ) IF( INFO.NE.0 ) $ GO TO 20 * * Prepare the INDXQ sorting permutation. * N1 = K N2 = N - K CALL SLAMRG( N1, N2, D, 1, -1, INDXQ ) ELSE DO 10 I = 1, N INDXQ( I ) = I 10 CONTINUE END IF * 20 CONTINUE RETURN * * End of SLAED1 * END