numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slaed3.f | 9230B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
*> \brief \b SLAED3 used by SSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAED3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMBDA, Q2, INDX, * CTOT, W, S, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, K, LDQ, N, N1 * REAL RHO * .. * .. Array Arguments .. * INTEGER CTOT( * ), INDX( * ) * REAL D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ), * $ S( * ), W( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAED3 finds the roots of the secular equation, as defined by the *> values in D, W, and RHO, between 1 and K. It makes the *> appropriate calls to SLAED4 and then updates the eigenvectors by *> multiplying the matrix of eigenvectors of the pair of eigensystems *> being combined by the matrix of eigenvectors of the K-by-K system *> which is solved here. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] K *> \verbatim *> K is INTEGER *> The number of terms in the rational function to be solved by *> SLAED4. K >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns in the Q matrix. *> N >= K (deflation may result in N>K). *> \endverbatim *> *> \param[in] N1 *> \verbatim *> N1 is INTEGER *> The location of the last eigenvalue in the leading submatrix. *> min(1,N) <= N1 <= N/2. *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension (N) *> D(I) contains the updated eigenvalues for *> 1 <= I <= K. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is REAL array, dimension (LDQ,N) *> Initially the first K columns are used as workspace. *> On output the columns 1 to K contain *> the updated eigenvectors. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,N). *> \endverbatim *> *> \param[in] RHO *> \verbatim *> RHO is REAL *> The value of the parameter in the rank one update equation. *> RHO >= 0 required. *> \endverbatim *> *> \param[in] DLAMBDA *> \verbatim *> DLAMBDA is REAL array, dimension (K) *> The first K elements of this array contain the old roots *> of the deflated updating problem. These are the poles *> of the secular equation. *> \endverbatim *> *> \param[in] Q2 *> \verbatim *> Q2 is REAL array, dimension (LDQ2*N) *> The first K columns of this matrix contain the non-deflated *> eigenvectors for the split problem. *> \endverbatim *> *> \param[in] INDX *> \verbatim *> INDX is INTEGER array, dimension (N) *> The permutation used to arrange the columns of the deflated *> Q matrix into three groups (see SLAED2). *> The rows of the eigenvectors found by SLAED4 must be likewise *> permuted before the matrix multiply can take place. *> \endverbatim *> *> \param[in] CTOT *> \verbatim *> CTOT is INTEGER array, dimension (4) *> A count of the total number of the various types of columns *> in Q, as described in INDX. The fourth column type is any *> column which has been deflated. *> \endverbatim *> *> \param[in,out] W *> \verbatim *> W is REAL array, dimension (K) *> The first K elements of this array contain the components *> of the deflation-adjusted updating vector. Destroyed on *> output. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (N1 + 1)*K *> Will contain the eigenvectors of the repaired matrix which *> will be multiplied by the previously accumulated eigenvectors *> to update the system. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, an eigenvalue did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laed3 * *> \par Contributors: * ================== *> *> Jeff Rutter, Computer Science Division, University of California *> at Berkeley, USA \n *> Modified by Francoise Tisseur, University of Tennessee *> * ===================================================================== SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMBDA, Q2, INDX, $ CTOT, W, S, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, K, LDQ, N, N1 REAL RHO * .. * .. Array Arguments .. INTEGER CTOT( * ), INDX( * ) REAL D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ), $ S( * ), W( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER I, II, IQ2, J, N12, N2, N23 REAL TEMP * .. * .. External Functions .. REAL SNRM2 EXTERNAL SNRM2 * .. * .. External Subroutines .. EXTERNAL SCOPY, SGEMM, SLACPY, SLAED4, SLASET, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( K.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.K ) THEN INFO = -2 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED3', -INFO ) RETURN END IF * * Quick return if possible * IF( K.EQ.0 ) $ RETURN * DO 20 J = 1, K CALL SLAED4( K, J, DLAMBDA, W, Q( 1, J ), RHO, D( J ), $ INFO ) * * If the zero finder fails, the computation is terminated. * IF( INFO.NE.0 ) $ GO TO 120 20 CONTINUE * IF( K.EQ.1 ) $ GO TO 110 IF( K.EQ.2 ) THEN DO 30 J = 1, K W( 1 ) = Q( 1, J ) W( 2 ) = Q( 2, J ) II = INDX( 1 ) Q( 1, J ) = W( II ) II = INDX( 2 ) Q( 2, J ) = W( II ) 30 CONTINUE GO TO 110 END IF * * Compute updated W. * CALL SCOPY( K, W, 1, S, 1 ) * * Initialize W(I) = Q(I,I) * CALL SCOPY( K, Q, LDQ+1, W, 1 ) DO 60 J = 1, K DO 40 I = 1, J - 1 W( I ) = W( I )*( Q( I, J )/( DLAMBDA( I )-DLAMBDA( J ) ) ) 40 CONTINUE DO 50 I = J + 1, K W( I ) = W( I )*( Q( I, J )/( DLAMBDA( I )-DLAMBDA( J ) ) ) 50 CONTINUE 60 CONTINUE DO 70 I = 1, K W( I ) = SIGN( SQRT( -W( I ) ), S( I ) ) 70 CONTINUE * * Compute eigenvectors of the modified rank-1 modification. * DO 100 J = 1, K DO 80 I = 1, K S( I ) = W( I ) / Q( I, J ) 80 CONTINUE TEMP = SNRM2( K, S, 1 ) DO 90 I = 1, K II = INDX( I ) Q( I, J ) = S( II ) / TEMP 90 CONTINUE 100 CONTINUE * * Compute the updated eigenvectors. * 110 CONTINUE * N2 = N - N1 N12 = CTOT( 1 ) + CTOT( 2 ) N23 = CTOT( 2 ) + CTOT( 3 ) * CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 ) IQ2 = N1*N12 + 1 IF( N23.NE.0 ) THEN CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, $ N23, $ ZERO, Q( N1+1, 1 ), LDQ ) ELSE CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ ) END IF * CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 ) IF( N12.NE.0 ) THEN CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, $ Q, $ LDQ ) ELSE CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ ) END IF * * 120 CONTINUE RETURN * * End of SLAED3 * END