numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/slaed3.f 9230B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
*> \brief \b SLAED3 used by SSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAED3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed3.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMBDA, Q2, INDX,
*                          CTOT, W, S, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDQ, N, N1
*       REAL               RHO
*       ..
*       .. Array Arguments ..
*       INTEGER            CTOT( * ), INDX( * )
*       REAL               D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
*      $                   S( * ), W( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLAED3 finds the roots of the secular equation, as defined by the
*> values in D, W, and RHO, between 1 and K.  It makes the
*> appropriate calls to SLAED4 and then updates the eigenvectors by
*> multiplying the matrix of eigenvectors of the pair of eigensystems
*> being combined by the matrix of eigenvectors of the K-by-K system
*> which is solved here.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of terms in the rational function to be solved by
*>          SLAED4.  K >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns in the Q matrix.
*>          N >= K (deflation may result in N>K).
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*>          N1 is INTEGER
*>          The location of the last eigenvalue in the leading submatrix.
*>          min(1,N) <= N1 <= N/2.
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          D(I) contains the updated eigenvalues for
*>          1 <= I <= K.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDQ,N)
*>          Initially the first K columns are used as workspace.
*>          On output the columns 1 to K contain
*>          the updated eigenvectors.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q.  LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*>          RHO is REAL
*>          The value of the parameter in the rank one update equation.
*>          RHO >= 0 required.
*> \endverbatim
*>
*> \param[in] DLAMBDA
*> \verbatim
*>          DLAMBDA is REAL array, dimension (K)
*>          The first K elements of this array contain the old roots
*>          of the deflated updating problem.  These are the poles
*>          of the secular equation.
*> \endverbatim
*>
*> \param[in] Q2
*> \verbatim
*>          Q2 is REAL array, dimension (LDQ2*N)
*>          The first K columns of this matrix contain the non-deflated
*>          eigenvectors for the split problem.
*> \endverbatim
*>
*> \param[in] INDX
*> \verbatim
*>          INDX is INTEGER array, dimension (N)
*>          The permutation used to arrange the columns of the deflated
*>          Q matrix into three groups (see SLAED2).
*>          The rows of the eigenvectors found by SLAED4 must be likewise
*>          permuted before the matrix multiply can take place.
*> \endverbatim
*>
*> \param[in] CTOT
*> \verbatim
*>          CTOT is INTEGER array, dimension (4)
*>          A count of the total number of the various types of columns
*>          in Q, as described in INDX.  The fourth column type is any
*>          column which has been deflated.
*> \endverbatim
*>
*> \param[in,out] W
*> \verbatim
*>          W is REAL array, dimension (K)
*>          The first K elements of this array contain the components
*>          of the deflation-adjusted updating vector. Destroyed on
*>          output.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (N1 + 1)*K
*>          Will contain the eigenvectors of the repaired matrix which
*>          will be multiplied by the previously accumulated eigenvectors
*>          to update the system.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = 1, an eigenvalue did not converge
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup laed3
*
*> \par Contributors:
*  ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA \n
*>  Modified by Francoise Tisseur, University of Tennessee
*>
*  =====================================================================
      SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMBDA, Q2, INDX,
     $                   CTOT, W, S, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      REAL               RHO
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( * ), INDX( * )
      REAL               D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
     $                   S( * ), W( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, IQ2, J, N12, N2, N23
      REAL               TEMP
*     ..
*     .. External Functions ..
      REAL               SNRM2
      EXTERNAL           SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED4, SLASET,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( K.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.K ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAED3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
      DO 20 J = 1, K
         CALL SLAED4( K, J, DLAMBDA, W, Q( 1, J ), RHO, D( J ),
     $                INFO )
*
*        If the zero finder fails, the computation is terminated.
*
         IF( INFO.NE.0 )
     $      GO TO 120
   20 CONTINUE
*
      IF( K.EQ.1 )
     $   GO TO 110
      IF( K.EQ.2 ) THEN
         DO 30 J = 1, K
            W( 1 ) = Q( 1, J )
            W( 2 ) = Q( 2, J )
            II = INDX( 1 )
            Q( 1, J ) = W( II )
            II = INDX( 2 )
            Q( 2, J ) = W( II )
   30    CONTINUE
         GO TO 110
      END IF
*
*     Compute updated W.
*
      CALL SCOPY( K, W, 1, S, 1 )
*
*     Initialize W(I) = Q(I,I)
*
      CALL SCOPY( K, Q, LDQ+1, W, 1 )
      DO 60 J = 1, K
         DO 40 I = 1, J - 1
            W( I ) = W( I )*( Q( I, J )/( DLAMBDA( I )-DLAMBDA( J ) ) )
   40    CONTINUE
         DO 50 I = J + 1, K
            W( I ) = W( I )*( Q( I, J )/( DLAMBDA( I )-DLAMBDA( J ) ) )
   50    CONTINUE
   60 CONTINUE
      DO 70 I = 1, K
         W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
   70 CONTINUE
*
*     Compute eigenvectors of the modified rank-1 modification.
*
      DO 100 J = 1, K
         DO 80 I = 1, K
            S( I ) = W( I ) / Q( I, J )
   80    CONTINUE
         TEMP = SNRM2( K, S, 1 )
         DO 90 I = 1, K
            II = INDX( I )
            Q( I, J ) = S( II ) / TEMP
   90    CONTINUE
  100 CONTINUE
*
*     Compute the updated eigenvectors.
*
  110 CONTINUE
*
      N2 = N - N1
      N12 = CTOT( 1 ) + CTOT( 2 )
      N23 = CTOT( 2 ) + CTOT( 3 )
*
      CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
      IQ2 = N1*N12 + 1
      IF( N23.NE.0 ) THEN
         CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S,
     $               N23,
     $               ZERO, Q( N1+1, 1 ), LDQ )
      ELSE
         CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
      END IF
*
      CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 )
      IF( N12.NE.0 ) THEN
         CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO,
     $               Q,
     $               LDQ )
      ELSE
         CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
      END IF
*
*
  120 CONTINUE
      RETURN
*
*     End of SLAED3
*
      END