numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slagts.f | 12349B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
*> \brief \b SLAGTS solves the system of equations (T-λI)x = y *> or (T-λI)^Tx = y, where T is a general tridiagonal matrix *> and λ a scalar, using the LU factorization computed by slagtf. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAGTS + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagts.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagts.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagts.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, JOB, N * REAL TOL * .. * .. Array Arguments .. * INTEGER IN( * ) * REAL A( * ), B( * ), C( * ), D( * ), Y( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAGTS may be used to solve one of the systems of equations *> *> (T - lambda*I)*x = y or (T - lambda*I)**T*x = y, *> *> where T is an n by n tridiagonal matrix, for x, following the *> factorization of (T - lambda*I) as *> *> (T - lambda*I) = P*L*U , *> *> by routine SLAGTF. The choice of equation to be solved is *> controlled by the argument JOB, and in each case there is an option *> to perturb zero or very small diagonal elements of U, this option *> being intended for use in applications such as inverse iteration. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is INTEGER *> Specifies the job to be performed by SLAGTS as follows: *> = 1: The equations (T - lambda*I)x = y are to be solved, *> but diagonal elements of U are not to be perturbed. *> = -1: The equations (T - lambda*I)x = y are to be solved *> and, if overflow would otherwise occur, the diagonal *> elements of U are to be perturbed. See argument TOL *> below. *> = 2: The equations (T - lambda*I)**Tx = y are to be solved, *> but diagonal elements of U are not to be perturbed. *> = -2: The equations (T - lambda*I)**Tx = y are to be solved *> and, if overflow would otherwise occur, the diagonal *> elements of U are to be perturbed. See argument TOL *> below. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix T. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (N) *> On entry, A must contain the diagonal elements of U as *> returned from SLAGTF. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (N-1) *> On entry, B must contain the first super-diagonal elements of *> U as returned from SLAGTF. *> \endverbatim *> *> \param[in] C *> \verbatim *> C is REAL array, dimension (N-1) *> On entry, C must contain the sub-diagonal elements of L as *> returned from SLAGTF. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N-2) *> On entry, D must contain the second super-diagonal elements *> of U as returned from SLAGTF. *> \endverbatim *> *> \param[in] IN *> \verbatim *> IN is INTEGER array, dimension (N) *> On entry, IN must contain details of the matrix P as returned *> from SLAGTF. *> \endverbatim *> *> \param[in,out] Y *> \verbatim *> Y is REAL array, dimension (N) *> On entry, the right hand side vector y. *> On exit, Y is overwritten by the solution vector x. *> \endverbatim *> *> \param[in,out] TOL *> \verbatim *> TOL is REAL *> On entry, with JOB < 0, TOL should be the minimum *> perturbation to be made to very small diagonal elements of U. *> TOL should normally be chosen as about eps*norm(U), where eps *> is the relative machine precision, but if TOL is supplied as *> non-positive, then it is reset to eps*max( abs( u(i,j) ) ). *> If JOB > 0 then TOL is not referenced. *> *> On exit, TOL is changed as described above, only if TOL is *> non-positive on entry. Otherwise TOL is unchanged. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: overflow would occur when computing the INFO(th) *> element of the solution vector x. This can only occur *> when JOB is supplied as positive and either means *> that a diagonal element of U is very small, or that *> the elements of the right-hand side vector y are very *> large. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lagts * * ===================================================================== SUBROUTINE SLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, JOB, N REAL TOL * .. * .. Array Arguments .. INTEGER IN( * ) REAL A( * ), B( * ), C( * ), D( * ), Y( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER K REAL ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SIGN * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * INFO = 0 IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAGTS', -INFO ) RETURN END IF * IF( N.EQ.0 ) $ RETURN * EPS = SLAMCH( 'Epsilon' ) SFMIN = SLAMCH( 'Safe minimum' ) BIGNUM = ONE / SFMIN * IF( JOB.LT.0 ) THEN IF( TOL.LE.ZERO ) THEN TOL = ABS( A( 1 ) ) IF( N.GT.1 ) $ TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) ) DO 10 K = 3, N TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ), $ ABS( D( K-2 ) ) ) 10 CONTINUE TOL = TOL*EPS IF( TOL.EQ.ZERO ) $ TOL = EPS END IF END IF * IF( ABS( JOB ).EQ.1 ) THEN DO 20 K = 2, N IF( IN( K-1 ).EQ.0 ) THEN Y( K ) = Y( K ) - C( K-1 )*Y( K-1 ) ELSE TEMP = Y( K-1 ) Y( K-1 ) = Y( K ) Y( K ) = TEMP - C( K-1 )*Y( K ) END IF 20 CONTINUE IF( JOB.EQ.1 ) THEN DO 30 K = N, 1, -1 IF( K.LE.N-2 ) THEN TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 ) ELSE IF( K.EQ.N-1 ) THEN TEMP = Y( K ) - B( K )*Y( K+1 ) ELSE TEMP = Y( K ) END IF AK = A( K ) ABSAK = ABS( AK ) IF( ABSAK.LT.ONE ) THEN IF( ABSAK.LT.SFMIN ) THEN IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK ) $ THEN INFO = K RETURN ELSE TEMP = TEMP*BIGNUM AK = AK*BIGNUM END IF ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN INFO = K RETURN END IF END IF Y( K ) = TEMP / AK 30 CONTINUE ELSE DO 50 K = N, 1, -1 IF( K.LE.N-2 ) THEN TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 ) ELSE IF( K.EQ.N-1 ) THEN TEMP = Y( K ) - B( K )*Y( K+1 ) ELSE TEMP = Y( K ) END IF AK = A( K ) PERT = SIGN( TOL, AK ) 40 CONTINUE ABSAK = ABS( AK ) IF( ABSAK.LT.ONE ) THEN IF( ABSAK.LT.SFMIN ) THEN IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK ) $ THEN AK = AK + PERT PERT = 2*PERT GO TO 40 ELSE TEMP = TEMP*BIGNUM AK = AK*BIGNUM END IF ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN AK = AK + PERT PERT = 2*PERT GO TO 40 END IF END IF Y( K ) = TEMP / AK 50 CONTINUE END IF ELSE * * Come to here if JOB = 2 or -2 * IF( JOB.EQ.2 ) THEN DO 60 K = 1, N IF( K.GE.3 ) THEN TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 ) ELSE IF( K.EQ.2 ) THEN TEMP = Y( K ) - B( K-1 )*Y( K-1 ) ELSE TEMP = Y( K ) END IF AK = A( K ) ABSAK = ABS( AK ) IF( ABSAK.LT.ONE ) THEN IF( ABSAK.LT.SFMIN ) THEN IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK ) $ THEN INFO = K RETURN ELSE TEMP = TEMP*BIGNUM AK = AK*BIGNUM END IF ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN INFO = K RETURN END IF END IF Y( K ) = TEMP / AK 60 CONTINUE ELSE DO 80 K = 1, N IF( K.GE.3 ) THEN TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 ) ELSE IF( K.EQ.2 ) THEN TEMP = Y( K ) - B( K-1 )*Y( K-1 ) ELSE TEMP = Y( K ) END IF AK = A( K ) PERT = SIGN( TOL, AK ) 70 CONTINUE ABSAK = ABS( AK ) IF( ABSAK.LT.ONE ) THEN IF( ABSAK.LT.SFMIN ) THEN IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK ) $ THEN AK = AK + PERT PERT = 2*PERT GO TO 70 ELSE TEMP = TEMP*BIGNUM AK = AK*BIGNUM END IF ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN AK = AK + PERT PERT = 2*PERT GO TO 70 END IF END IF Y( K ) = TEMP / AK 80 CONTINUE END IF * DO 90 K = N, 2, -1 IF( IN( K-1 ).EQ.0 ) THEN Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K ) ELSE TEMP = Y( K-1 ) Y( K-1 ) = Y( K ) Y( K ) = TEMP - C( K-1 )*Y( K ) END IF 90 CONTINUE END IF * * End of SLAGTS * END