numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slaqp2.f | 7469B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
*> \brief \b SLAQP2 computes a QR factorization with column pivoting of the matrix block. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAQP2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqp2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqp2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqp2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, * WORK ) * * .. Scalar Arguments .. * INTEGER LDA, M, N, OFFSET * .. * .. Array Arguments .. * INTEGER JPVT( * ) * REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAQP2 computes a QR factorization with column pivoting of *> the block A(OFFSET+1:M,1:N). *> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] OFFSET *> \verbatim *> OFFSET is INTEGER *> The number of rows of the matrix A that must be pivoted *> but no factorized. OFFSET >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is *> the triangular factor obtained; the elements in block *> A(OFFSET+1:M,1:N) below the diagonal, together with the *> array TAU, represent the orthogonal matrix Q as a product of *> elementary reflectors. Block A(1:OFFSET,1:N) has been *> accordingly pivoted, but no factorized. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in,out] JPVT *> \verbatim *> JPVT is INTEGER array, dimension (N) *> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted *> to the front of A*P (a leading column); if JPVT(i) = 0, *> the i-th column of A is a free column. *> On exit, if JPVT(i) = k, then the i-th column of A*P *> was the k-th column of A. *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is REAL array, dimension (min(M,N)) *> The scalar factors of the elementary reflectors. *> \endverbatim *> *> \param[in,out] VN1 *> \verbatim *> VN1 is REAL array, dimension (N) *> The vector with the partial column norms. *> \endverbatim *> *> \param[in,out] VN2 *> \verbatim *> VN2 is REAL array, dimension (N) *> The vector with the exact column norms. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (N) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laqp2 * *> \par Contributors: * ================== *> *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain *> X. Sun, Computer Science Dept., Duke University, USA *> \n *> Partial column norm updating strategy modified on April 2011 *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics, *> University of Zagreb, Croatia. * *> \par References: * ================ *> *> LAPACK Working Note 176 * *> \htmlonly *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> *> \endhtmlonly * * ===================================================================== SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, $ WORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER LDA, M, N, OFFSET * .. * .. Array Arguments .. INTEGER JPVT( * ) REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, ITEMP, J, MN, OFFPI, PVT REAL TEMP, TEMP2, TOL3Z * .. * .. External Subroutines .. EXTERNAL SLARF1F, SLARFG, SSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. External Functions .. INTEGER ISAMAX REAL SLAMCH, SNRM2 EXTERNAL ISAMAX, SLAMCH, SNRM2 * .. * .. Executable Statements .. * MN = MIN( M-OFFSET, N ) TOL3Z = SQRT(SLAMCH('Epsilon')) * * Compute factorization. * DO 20 I = 1, MN * OFFPI = OFFSET + I * * Determine ith pivot column and swap if necessary. * PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 ) * IF( PVT.NE.I ) THEN CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) ITEMP = JPVT( PVT ) JPVT( PVT ) = JPVT( I ) JPVT( I ) = ITEMP VN1( PVT ) = VN1( I ) VN2( PVT ) = VN2( I ) END IF * * Generate elementary reflector H(i). * IF( OFFPI.LT.M ) THEN CALL SLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), $ 1, $ TAU( I ) ) ELSE CALL SLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) ) END IF * IF( I.LT.N ) THEN * * Apply H(i)**T to A(offset+i:m,i+1:n) from the left. * CALL SLARF1F( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1, $ TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) ) END IF * * Update partial column norms. * DO 10 J = I + 1, N IF( VN1( J ).NE.ZERO ) THEN * * NOTE: The following 4 lines follow from the analysis in * Lapack Working Note 176. * TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2 TEMP = MAX( TEMP, ZERO ) TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2 IF( TEMP2 .LE. TOL3Z ) THEN IF( OFFPI.LT.M ) THEN VN1( J ) = SNRM2( M-OFFPI, A( OFFPI+1, J ), 1 ) VN2( J ) = VN1( J ) ELSE VN1( J ) = ZERO VN2( J ) = ZERO END IF ELSE VN1( J ) = VN1( J )*SQRT( TEMP ) END IF END IF 10 CONTINUE * 20 CONTINUE * RETURN * * End of SLAQP2 * END