numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slaqz3.f | 18448B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
*> \brief \b SLAQZ3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAQZ3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, * $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHAR, ALPHAI, BETA, QC, LDQC, * $ ZC, LDZC, WORK, LWORK, REC, INFO ) * IMPLICIT NONE * * Arguments * LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ * INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ, * $ LDQC, LDZC, LWORK, REC * * REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ) * INTEGER, INTENT( OUT ) :: NS, ND, INFO * REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAQZ3 performs AED *> \endverbatim * * Arguments: * ========== * *> \param[in] ILSCHUR *> \verbatim *> ILSCHUR is LOGICAL *> Determines whether or not to update the full Schur form *> \endverbatim *> \param[in] ILQ *> \verbatim *> ILQ is LOGICAL *> Determines whether or not to update the matrix Q *> \endverbatim *> *> \param[in] ILZ *> \verbatim *> ILZ is LOGICAL *> Determines whether or not to update the matrix Z *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, Q, and Z. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of (A,B) which *> are to be normalized *> \endverbatim *> *> \param[in] NW *> \verbatim *> NW is INTEGER *> The desired size of the deflation window. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max( 1, N ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is REAL array, dimension (LDB, N) *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max( 1, N ). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is REAL array, dimension (LDQ, N) *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is REAL array, dimension (LDZ, N) *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> \endverbatim *> *> \param[out] NS *> \verbatim *> NS is INTEGER *> The number of unconverged eigenvalues available to *> use as shifts. *> \endverbatim *> *> \param[out] ND *> \verbatim *> ND is INTEGER *> The number of converged eigenvalues found. *> \endverbatim *> *> \param[out] ALPHAR *> \verbatim *> ALPHAR is REAL array, dimension (N) *> The real parts of each scalar alpha defining an eigenvalue *> of GNEP. *> \endverbatim *> *> \param[out] ALPHAI *> \verbatim *> ALPHAI is REAL array, dimension (N) *> The imaginary parts of each scalar alpha defining an *> eigenvalue of GNEP. *> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if *> positive, then the j-th and (j+1)-st eigenvalues are a *> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is REAL array, dimension (N) *> The scalars beta that define the eigenvalues of GNEP. *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and *> beta = BETA(j) represent the j-th eigenvalue of the matrix *> pair (A,B), in one of the forms lambda = alpha/beta or *> mu = beta/alpha. Since either lambda or mu may overflow, *> they should not, in general, be computed. *> \endverbatim *> *> \param[in,out] QC *> \verbatim *> QC is REAL array, dimension (LDQC, NW) *> \endverbatim *> *> \param[in] LDQC *> \verbatim *> LDQC is INTEGER *> \endverbatim *> *> \param[in,out] ZC *> \verbatim *> ZC is REAL array, dimension (LDZC, NW) *> \endverbatim *> *> \param[in] LDZC *> \verbatim *> LDZ is INTEGER *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[in] REC *> \verbatim *> REC is INTEGER *> REC indicates the current recursion level. Should be set *> to 0 on first call. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Thijs Steel, KU Leuven * *> \date May 2020 * *> \ingroup laqz3 *> * ===================================================================== RECURSIVE SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, $ NW, $ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS, $ ND, ALPHAR, ALPHAI, BETA, QC, LDQC, $ ZC, LDZC, WORK, LWORK, REC, INFO ) IMPLICIT NONE * Arguments LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ, $ LDQC, LDZC, LWORK, REC REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * ) INTEGER, INTENT( OUT ) :: NS, ND, INFO REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * ) * Parameters REAL :: ZERO, ONE, HALF PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 ) * Local Scalars LOGICAL :: BULGE INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, STGEXC_INFO, $ IFST, ILST, LWORKREQ, QZ_SMALL_INFO REAL :: S, SMLNUM, ULP, SAFMIN, SAFMAX, C1, S1, TEMP * External Functions EXTERNAL :: XERBLA, STGEXC, SLAQZ0, SLACPY, SLASET, $ SLAQZ2, SROT, SLARTG, SLAG2, SGEMM REAL, EXTERNAL :: SLAMCH, SROUNDUP_LWORK INFO = 0 * Set up deflation window JW = MIN( NW, IHI-ILO+1 ) KWTOP = IHI-JW+1 IF ( KWTOP .EQ. ILO ) THEN S = ZERO ELSE S = A( KWTOP, KWTOP-1 ) END IF * Determine required workspace IFST = 1 ILST = JW CALL STGEXC( .TRUE., .TRUE., JW, A, LDA, B, LDB, QC, LDQC, ZC, $ LDZC, IFST, ILST, WORK, -1, STGEXC_INFO ) LWORKREQ = INT( WORK( 1 ) ) CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA, $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC, $ LDQC, ZC, LDZC, WORK, -1, REC+1, QZ_SMALL_INFO ) LWORKREQ = MAX( LWORKREQ, INT( WORK( 1 ) )+2*JW**2 ) LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N ) IF ( LWORK .EQ.-1 ) THEN * workspace query, quick return WORK( 1 ) = SROUNDUP_LWORK(LWORKREQ) RETURN ELSE IF ( LWORK .LT. LWORKREQ ) THEN INFO = -26 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAQZ3', -INFO ) RETURN END IF * Get machine constants SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE/SAFMIN ULP = SLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( REAL( N )/ULP ) IF ( IHI .EQ. KWTOP ) THEN * 1 by 1 deflation window, just try a regular deflation ALPHAR( KWTOP ) = A( KWTOP, KWTOP ) ALPHAI( KWTOP ) = ZERO BETA( KWTOP ) = B( KWTOP, KWTOP ) NS = 1 ND = 0 IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP, $ KWTOP ) ) ) ) THEN NS = 0 ND = 1 IF ( KWTOP .GT. ILO ) THEN A( KWTOP, KWTOP-1 ) = ZERO END IF END IF END IF * Store window in case of convergence failure CALL SLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW ) CALL SLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, $ WORK( JW**2+ $ 1 ), JW ) * Transform window to real schur form CALL SLASET( 'FULL', JW, JW, ZERO, ONE, QC, LDQC ) CALL SLASET( 'FULL', JW, JW, ZERO, ONE, ZC, LDZC ) CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA, $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC, $ LDQC, ZC, LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2, $ REC+1, QZ_SMALL_INFO ) IF( QZ_SMALL_INFO .NE. 0 ) THEN * Convergence failure, restore the window and exit ND = 0 NS = JW-QZ_SMALL_INFO CALL SLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), $ LDA ) CALL SLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP, $ KWTOP ), LDB ) RETURN END IF * Deflation detection loop IF ( KWTOP .EQ. ILO .OR. S .EQ. ZERO ) THEN KWBOT = KWTOP-1 ELSE KWBOT = IHI K = 1 K2 = 1 DO WHILE ( K .LE. JW ) BULGE = .FALSE. IF ( KWBOT-KWTOP+1 .GE. 2 ) THEN BULGE = A( KWBOT, KWBOT-1 ) .NE. ZERO END IF IF ( BULGE ) THEN * Try to deflate complex conjugate eigenvalue pair TEMP = ABS( A( KWBOT, KWBOT ) )+SQRT( ABS( A( KWBOT, $ KWBOT-1 ) ) )*SQRT( ABS( A( KWBOT-1, KWBOT ) ) ) IF( TEMP .EQ. ZERO )THEN TEMP = ABS( S ) END IF IF ( MAX( ABS( S*QC( 1, KWBOT-KWTOP ) ), ABS( S*QC( 1, $ KWBOT-KWTOP+1 ) ) ) .LE. MAX( SMLNUM, $ ULP*TEMP ) ) THEN * Deflatable KWBOT = KWBOT-2 ELSE * Not deflatable, move out of the way IFST = KWBOT-KWTOP+1 ILST = K2 CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ), $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC, $ ZC, LDZC, IFST, ILST, WORK, LWORK, $ STGEXC_INFO ) K2 = K2+2 END IF K = K+2 ELSE * Try to deflate real eigenvalue TEMP = ABS( A( KWBOT, KWBOT ) ) IF( TEMP .EQ. ZERO ) THEN TEMP = ABS( S ) END IF IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP* $ TEMP, SMLNUM ) ) THEN * Deflatable KWBOT = KWBOT-1 ELSE * Not deflatable, move out of the way IFST = KWBOT-KWTOP+1 ILST = K2 CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ), $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC, $ ZC, LDZC, IFST, ILST, WORK, LWORK, $ STGEXC_INFO ) K2 = K2+1 END IF K = K+1 END IF END DO END IF * Store eigenvalues ND = IHI-KWBOT NS = JW-ND K = KWTOP DO WHILE ( K .LE. IHI ) BULGE = .FALSE. IF ( K .LT. IHI ) THEN IF ( A( K+1, K ) .NE. ZERO ) THEN BULGE = .TRUE. END IF END IF IF ( BULGE ) THEN * 2x2 eigenvalue block CALL SLAG2( A( K, K ), LDA, B( K, K ), LDB, SAFMIN, $ BETA( K ), BETA( K+1 ), ALPHAR( K ), $ ALPHAR( K+1 ), ALPHAI( K ) ) ALPHAI( K+1 ) = -ALPHAI( K ) K = K+2 ELSE * 1x1 eigenvalue block ALPHAR( K ) = A( K, K ) ALPHAI( K ) = ZERO BETA( K ) = B( K, K ) K = K+1 END IF END DO IF ( KWTOP .NE. ILO .AND. S .NE. ZERO ) THEN * Reflect spike back, this will create optimally packed bulges A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 )*QC( 1, $ 1:JW-ND ) DO K = KWBOT-1, KWTOP, -1 CALL SLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1, $ TEMP ) A( K, KWTOP-1 ) = TEMP A( K+1, KWTOP-1 ) = ZERO K2 = MAX( KWTOP, K-1 ) CALL SROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, $ C1, $ S1 ) CALL SROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, $ K-1 ), $ LDB, C1, S1 ) CALL SROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, $ K+1-KWTOP+1 ), $ 1, C1, S1 ) END DO * Chase bulges down ISTARTM = KWTOP ISTOPM = IHI K = KWBOT-1 DO WHILE ( K .GE. KWTOP ) IF ( ( K .GE. KWTOP+1 ) .AND. A( K+1, K-1 ) .NE. ZERO ) THEN * Move double pole block down and remove it DO K2 = K-1, KWBOT-2 CALL SLAQZ2( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1, $ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC, $ LDQC, JW, KWTOP, ZC, LDZC ) END DO K = K-2 ELSE * k points to single shift DO K2 = K, KWBOT-2 * Move shift down CALL SLARTG( B( K2+1, K2+1 ), B( K2+1, K2 ), C1, $ S1, $ TEMP ) B( K2+1, K2+1 ) = TEMP B( K2+1, K2 ) = ZERO CALL SROT( K2+2-ISTARTM+1, A( ISTARTM, K2+1 ), 1, $ A( ISTARTM, K2 ), 1, C1, S1 ) CALL SROT( K2-ISTARTM+1, B( ISTARTM, K2+1 ), 1, $ B( ISTARTM, K2 ), 1, C1, S1 ) CALL SROT( JW, ZC( 1, K2+1-KWTOP+1 ), 1, ZC( 1, $ K2-KWTOP+1 ), 1, C1, S1 ) CALL SLARTG( A( K2+1, K2 ), A( K2+2, K2 ), C1, S1, $ TEMP ) A( K2+1, K2 ) = TEMP A( K2+2, K2 ) = ZERO CALL SROT( ISTOPM-K2, A( K2+1, K2+1 ), LDA, $ A( K2+2, $ K2+1 ), LDA, C1, S1 ) CALL SROT( ISTOPM-K2, B( K2+1, K2+1 ), LDB, $ B( K2+2, $ K2+1 ), LDB, C1, S1 ) CALL SROT( JW, QC( 1, K2+1-KWTOP+1 ), 1, QC( 1, $ K2+2-KWTOP+1 ), 1, C1, S1 ) END DO * Remove the shift CALL SLARTG( B( KWBOT, KWBOT ), B( KWBOT, KWBOT-1 ), $ C1, $ S1, TEMP ) B( KWBOT, KWBOT ) = TEMP B( KWBOT, KWBOT-1 ) = ZERO CALL SROT( KWBOT-ISTARTM, B( ISTARTM, KWBOT ), 1, $ B( ISTARTM, KWBOT-1 ), 1, C1, S1 ) CALL SROT( KWBOT-ISTARTM+1, A( ISTARTM, KWBOT ), 1, $ A( ISTARTM, KWBOT-1 ), 1, C1, S1 ) CALL SROT( JW, ZC( 1, KWBOT-KWTOP+1 ), 1, ZC( 1, $ KWBOT-1-KWTOP+1 ), 1, C1, S1 ) K = K-1 END IF END DO END IF * Apply Qc and Zc to rest of the matrix IF ( ILSCHUR ) THEN ISTARTM = 1 ISTOPM = N ELSE ISTARTM = ILO ISTOPM = IHI END IF IF ( ISTOPM-IHI > 0 ) THEN CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC, $ A( KWTOP, IHI+1 ), LDA, ZERO, WORK, JW ) CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP, $ IHI+1 ), LDA ) CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC, $ B( KWTOP, IHI+1 ), LDB, ZERO, WORK, JW ) CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP, $ IHI+1 ), LDB ) END IF IF ( ILQ ) THEN CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Q( 1, KWTOP ), LDQ, $ QC, $ LDQC, ZERO, WORK, N ) CALL SLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ ) END IF IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, $ A( ISTARTM, $ KWTOP ), LDA, ZC, LDZC, ZERO, WORK, $ KWTOP-ISTARTM ) CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM, $ A( ISTARTM, KWTOP ), LDA ) CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, $ B( ISTARTM, $ KWTOP ), LDB, ZC, LDZC, ZERO, WORK, $ KWTOP-ISTARTM ) CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM, $ B( ISTARTM, KWTOP ), LDB ) END IF IF ( ILZ ) THEN CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Z( 1, KWTOP ), LDZ, $ ZC, $ LDZC, ZERO, WORK, N ) CALL SLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ ) END IF END SUBROUTINE