numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/slaqz4.f 17500B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
*> \brief \b SLAQZ4
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAQZ4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz4.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*      SUBROUTINE SLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
*     $    NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
*     $    QC, LDQC, ZC, LDZC, WORK, LWORK, INFO )
*      IMPLICIT NONE
*
*      Function arguments
*      LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
*      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
*     $    NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
*
*      REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
*     $    Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ), SR( * ),
*     $    SI( * ), SS( * )
*
*      INTEGER, INTENT( OUT ) :: INFO
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLAQZ4 Executes a single multishift QZ sweep
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ILSCHUR
*> \verbatim
*>          ILSCHUR is LOGICAL
*>              Determines whether or not to update the full Schur form
*> \endverbatim
*>
*> \param[in] ILQ
*> \verbatim
*>          ILQ is LOGICAL
*>              Determines whether or not to update the matrix Q
*> \endverbatim
*>
*> \param[in] ILZ
*> \verbatim
*>          ILZ is LOGICAL
*>              Determines whether or not to update the matrix Z
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, Q, and Z.  N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*>          ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*>          IHI is INTEGER
*> \endverbatim
*>
*> \param[in] NSHIFTS
*> \verbatim
*>          NSHIFTS is INTEGER
*>          The desired number of shifts to use
*> \endverbatim
*>
*> \param[in] NBLOCK_DESIRED
*> \verbatim
*>          NBLOCK_DESIRED is INTEGER
*>          The desired size of the computational windows
*> \endverbatim
*>
*> \param[in] SR
*> \verbatim
*>          SR is REAL array. SR contains
*>          the real parts of the shifts to use.
*> \endverbatim
*>
*> \param[in] SI
*> \verbatim
*>          SI is REAL array. SI contains
*>          the imaginary parts of the shifts to use.
*> \endverbatim
*>
*> \param[in] SS
*> \verbatim
*>          SS is REAL array. SS contains
*>          the scale of the shifts to use.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA, N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB, N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDQ, N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is REAL array, dimension (LDZ, N)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*> \endverbatim
*>
*> \param[in,out] QC
*> \verbatim
*>          QC is REAL array, dimension (LDQC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDQC
*> \verbatim
*>          LDQC is INTEGER
*> \endverbatim
*>
*> \param[in,out] ZC
*> \verbatim
*>          ZC is REAL array, dimension (LDZC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDZC
*> \verbatim
*>          LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,N).
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup laqz4
*>
*  =====================================================================
      SUBROUTINE SLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
     $                   NBLOCK_DESIRED, SR, SI, SS, A, LDA, B, LDB, Q,
     $                   LDQ, Z, LDZ, QC, LDQC, ZC, LDZC, WORK, LWORK,
     $                   INFO )
      IMPLICIT NONE

*     Function arguments
      LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
     $         NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC

      REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
     $   Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ), SR( * ),
     $   SI( * ), SS( * )

      INTEGER, INTENT( OUT ) :: INFO

*     Parameters
      REAL :: ZERO, ONE, HALF
      PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )

*     Local scalars
      INTEGER :: I, J, NS, ISTARTM, ISTOPM, SHEIGHT, SWIDTH, K, NP,
     $           ISTARTB, ISTOPB, ISHIFT, NBLOCK, NPOS
      REAL :: TEMP, V( 3 ), C1, S1, C2, S2, SWAP
*
*     External functions
      EXTERNAL :: XERBLA, SGEMM, SLAQZ1, SLAQZ2, SLASET, SLARTG, SROT,
     $            SLACPY
      REAL, EXTERNAL :: SROUNDUP_LWORK

      INFO = 0
      IF ( NBLOCK_DESIRED .LT. NSHIFTS+1 ) THEN
         INFO = -8
      END IF
      IF ( LWORK .EQ.-1 ) THEN
*        workspace query, quick return
         WORK( 1 ) = SROUNDUP_LWORK(N*NBLOCK_DESIRED)
         RETURN
      ELSE IF ( LWORK .LT. N*NBLOCK_DESIRED ) THEN
         INFO = -25
      END IF

      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAQZ4', -INFO )
         RETURN
      END IF

*     Executable statements

      IF ( NSHIFTS .LT. 2 ) THEN
         RETURN
      END IF

      IF ( ILO .GE. IHI ) THEN
         RETURN
      END IF

      IF ( ILSCHUR ) THEN
         ISTARTM = 1
         ISTOPM = N
      ELSE
         ISTARTM = ILO
         ISTOPM = IHI
      END IF

*     Shuffle shifts into pairs of real shifts and pairs
*     of complex conjugate shifts assuming complex
*     conjugate shifts are already adjacent to one
*     another

      DO I = 1, NSHIFTS-2, 2
         IF( SI( I ).NE.-SI( I+1 ) ) THEN
*
            SWAP = SR( I )
            SR( I ) = SR( I+1 )
            SR( I+1 ) = SR( I+2 )
            SR( I+2 ) = SWAP

            SWAP = SI( I )
            SI( I ) = SI( I+1 )
            SI( I+1 ) = SI( I+2 )
            SI( I+2 ) = SWAP
            
            SWAP = SS( I )
            SS( I ) = SS( I+1 )
            SS( I+1 ) = SS( I+2 )
            SS( I+2 ) = SWAP
         END IF
      END DO

*     NSHFTS is supposed to be even, but if it is odd,
*     then simply reduce it by one.  The shuffle above
*     ensures that the dropped shift is real and that
*     the remaining shifts are paired.

      NS = NSHIFTS-MOD( NSHIFTS, 2 )
      NPOS = MAX( NBLOCK_DESIRED-NS, 1 )

*     The following block introduces the shifts and chases
*     them down one by one just enough to make space for
*     the other shifts. The near-the-diagonal block is
*     of size (ns+1) x ns.

      CALL SLASET( 'FULL', NS+1, NS+1, ZERO, ONE, QC, LDQC )
      CALL SLASET( 'FULL', NS, NS, ZERO, ONE, ZC, LDZC )

      DO I = 1, NS, 2
*        Introduce the shift
         CALL SLAQZ1( A( ILO, ILO ), LDA, B( ILO, ILO ), LDB,
     $                SR( I ),
     $                SR( I+1 ), SI( I ), SS( I ), SS( I+1 ), V )

         TEMP = V( 2 )
         CALL SLARTG( TEMP, V( 3 ), C1, S1, V( 2 ) )
         CALL SLARTG( V( 1 ), V( 2 ), C2, S2, TEMP )

         CALL SROT( NS, A( ILO+1, ILO ), LDA, A( ILO+2, ILO ), LDA,
     $              C1,
     $              S1 )
         CALL SROT( NS, A( ILO, ILO ), LDA, A( ILO+1, ILO ), LDA, C2,
     $              S2 )
         CALL SROT( NS, B( ILO+1, ILO ), LDB, B( ILO+2, ILO ), LDB,
     $              C1,
     $              S1 )
         CALL SROT( NS, B( ILO, ILO ), LDB, B( ILO+1, ILO ), LDB, C2,
     $              S2 )
         CALL SROT( NS+1, QC( 1, 2 ), 1, QC( 1, 3 ), 1, C1, S1 )
         CALL SROT( NS+1, QC( 1, 1 ), 1, QC( 1, 2 ), 1, C2, S2 )

*        Chase the shift down
         DO J = 1, NS-1-I

            CALL SLAQZ2( .TRUE., .TRUE., J, 1, NS, IHI-ILO+1, A( ILO,
     $                   ILO ), LDA, B( ILO, ILO ), LDB, NS+1, 1, QC,
     $                   LDQC, NS, 1, ZC, LDZC )

         END DO

      END DO

*     Update the rest of the pencil

*     Update A(ilo:ilo+ns,ilo+ns:istopm) and B(ilo:ilo+ns,ilo+ns:istopm)
*     from the left with Qc(1:ns+1,1:ns+1)'
      SHEIGHT = NS+1
      SWIDTH = ISTOPM-( ILO+NS )+1
      IF ( SWIDTH > 0 ) THEN
         CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $               LDQC,
     $               A( ILO, ILO+NS ), LDA, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ILO,
     $                ILO+NS ), LDA )
         CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $               LDQC,
     $               B( ILO, ILO+NS ), LDB, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ILO,
     $                ILO+NS ), LDB )
      END IF
      IF ( ILQ ) THEN
         CALL SGEMM( 'N', 'N', N, SHEIGHT, SHEIGHT, ONE, Q( 1, ILO ),
     $               LDQ, QC, LDQC, ZERO, WORK, N )
         CALL SLACPY( 'ALL', N, SHEIGHT, WORK, N, Q( 1, ILO ), LDQ )
      END IF

*     Update A(istartm:ilo-1,ilo:ilo+ns-1) and B(istartm:ilo-1,ilo:ilo+ns-1)
*     from the right with Zc(1:ns,1:ns)
      SHEIGHT = ILO-1-ISTARTM+1
      SWIDTH = NS
      IF ( SHEIGHT > 0 ) THEN
         CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $               A( ISTARTM,
     $               ILO ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                A( ISTARTM,
     $                ILO ), LDA )
         CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $               B( ISTARTM,
     $               ILO ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                B( ISTARTM,
     $                ILO ), LDB )
      END IF
      IF ( ILZ ) THEN
         CALL SGEMM( 'N', 'N', N, SWIDTH, SWIDTH, ONE, Z( 1, ILO ),
     $               LDZ,
     $               ZC, LDZC, ZERO, WORK, N )
         CALL SLACPY( 'ALL', N, SWIDTH, WORK, N, Z( 1, ILO ), LDZ )
      END IF

*     The following block chases the shifts down to the bottom
*     right block. If possible, a shift is moved down npos
*     positions at a time

      K = ILO
      DO WHILE ( K < IHI-NS )
         NP = MIN( IHI-NS-K, NPOS )
*        Size of the near-the-diagonal block
         NBLOCK = NS+NP
*        istartb points to the first row we will be updating
         ISTARTB = K+1
*        istopb points to the last column we will be updating
         ISTOPB = K+NBLOCK-1

         CALL SLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, QC, LDQC )
         CALL SLASET( 'FULL', NS+NP, NS+NP, ZERO, ONE, ZC, LDZC )

*        Near the diagonal shift chase
         DO I = NS-1, 0, -2
            DO J = 0, NP-1
*              Move down the block with index k+i+j-1, updating
*              the (ns+np x ns+np) block:
*              (k:k+ns+np,k:k+ns+np-1)
               CALL SLAQZ2( .TRUE., .TRUE., K+I+J-1, ISTARTB, ISTOPB,
     $                      IHI, A, LDA, B, LDB, NBLOCK, K+1, QC, LDQC,
     $                      NBLOCK, K, ZC, LDZC )
            END DO
         END DO

*        Update rest of the pencil

*        Update A(k+1:k+ns+np, k+ns+np:istopm) and
*        B(k+1:k+ns+np, k+ns+np:istopm)
*        from the left with Qc(1:ns+np,1:ns+np)'
         SHEIGHT = NS+NP
         SWIDTH = ISTOPM-( K+NS+NP )+1
         IF ( SWIDTH > 0 ) THEN
            CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $                  LDQC, A( K+1, K+NS+NP ), LDA, ZERO, WORK,
     $                  SHEIGHT )
            CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                   A( K+1,
     $                   K+NS+NP ), LDA )
            CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $                  LDQC, B( K+1, K+NS+NP ), LDB, ZERO, WORK,
     $                  SHEIGHT )
            CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                   B( K+1,
     $                   K+NS+NP ), LDB )
         END IF
         IF ( ILQ ) THEN
            CALL SGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Q( 1,
     $                  K+1 ),
     $                  LDQ, QC, LDQC, ZERO, WORK, N )
            CALL SLACPY( 'ALL', N, NBLOCK, WORK, N, Q( 1, K+1 ),
     $                   LDQ )
         END IF

*        Update A(istartm:k,k:k+ns+npos-1) and B(istartm:k,k:k+ns+npos-1)
*        from the right with Zc(1:ns+np,1:ns+np)
         SHEIGHT = K-ISTARTM+1
         SWIDTH = NBLOCK
         IF ( SHEIGHT > 0 ) THEN
            CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $                  A( ISTARTM, K ), LDA, ZC, LDZC, ZERO, WORK,
     $                  SHEIGHT )
            CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                   A( ISTARTM, K ), LDA )
            CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $                  B( ISTARTM, K ), LDB, ZC, LDZC, ZERO, WORK,
     $                  SHEIGHT )
            CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                   B( ISTARTM, K ), LDB )
         END IF
         IF ( ILZ ) THEN
            CALL SGEMM( 'N', 'N', N, NBLOCK, NBLOCK, ONE, Z( 1, K ),
     $                  LDZ, ZC, LDZC, ZERO, WORK, N )
            CALL SLACPY( 'ALL', N, NBLOCK, WORK, N, Z( 1, K ), LDZ )
         END IF

         K = K+NP

      END DO

*     The following block removes the shifts from the bottom right corner
*     one by one. Updates are initially applied to A(ihi-ns+1:ihi,ihi-ns:ihi).

      CALL SLASET( 'FULL', NS, NS, ZERO, ONE, QC, LDQC )
      CALL SLASET( 'FULL', NS+1, NS+1, ZERO, ONE, ZC, LDZC )

*     istartb points to the first row we will be updating
      ISTARTB = IHI-NS+1
*     istopb points to the last column we will be updating
      ISTOPB = IHI

      DO I = 1, NS, 2
*        Chase the shift down to the bottom right corner
         DO ISHIFT = IHI-I-1, IHI-2
            CALL SLAQZ2( .TRUE., .TRUE., ISHIFT, ISTARTB, ISTOPB,
     $                   IHI,
     $                   A, LDA, B, LDB, NS, IHI-NS+1, QC, LDQC, NS+1,
     $                   IHI-NS, ZC, LDZC )
         END DO
         
      END DO

*     Update rest of the pencil

*     Update A(ihi-ns+1:ihi, ihi+1:istopm)
*     from the left with Qc(1:ns,1:ns)'
      SHEIGHT = NS
      SWIDTH = ISTOPM-( IHI+1 )+1
      IF ( SWIDTH > 0 ) THEN
         CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $               LDQC,
     $               A( IHI-NS+1, IHI+1 ), LDA, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                A( IHI-NS+1, IHI+1 ), LDA )
         CALL SGEMM( 'T', 'N', SHEIGHT, SWIDTH, SHEIGHT, ONE, QC,
     $               LDQC,
     $               B( IHI-NS+1, IHI+1 ), LDB, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                B( IHI-NS+1, IHI+1 ), LDB )
      END IF
      IF ( ILQ ) THEN
         CALL SGEMM( 'N', 'N', N, NS, NS, ONE, Q( 1, IHI-NS+1 ), LDQ,
     $               QC, LDQC, ZERO, WORK, N )
         CALL SLACPY( 'ALL', N, NS, WORK, N, Q( 1, IHI-NS+1 ), LDQ )
      END IF

*     Update A(istartm:ihi-ns,ihi-ns:ihi)
*     from the right with Zc(1:ns+1,1:ns+1)
      SHEIGHT = IHI-NS-ISTARTM+1
      SWIDTH = NS+1
      IF ( SHEIGHT > 0 ) THEN
         CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $               A( ISTARTM,
     $               IHI-NS ), LDA, ZC, LDZC, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                A( ISTARTM,
     $                IHI-NS ), LDA )
         CALL SGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, ONE,
     $               B( ISTARTM,
     $               IHI-NS ), LDB, ZC, LDZC, ZERO, WORK, SHEIGHT )
         CALL SLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
     $                B( ISTARTM,
     $                IHI-NS ), LDB )
      END IF
      IF ( ILZ ) THEN
      CALL SGEMM( 'N', 'N', N, NS+1, NS+1, ONE, Z( 1, IHI-NS ), LDZ,
     $            ZC,
     $            LDZC, ZERO, WORK, N )
         CALL SLACPY( 'ALL', N, NS+1, WORK, N, Z( 1, IHI-NS ), LDZ )
      END IF

      END SUBROUTINE