numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slarrf.f | 15287B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
*> \brief \b SLARRF finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLARRF + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrf.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrf.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrf.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLARRF( N, D, L, LD, CLSTRT, CLEND, * W, WGAP, WERR, * SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, * DPLUS, LPLUS, WORK, INFO ) * * .. Scalar Arguments .. * INTEGER CLSTRT, CLEND, INFO, N * REAL CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM * .. * .. Array Arguments .. * REAL D( * ), DPLUS( * ), L( * ), LD( * ), * $ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Given the initial representation L D L^T and its cluster of close *> eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... *> W( CLEND ), SLARRF finds a new relatively robust representation *> L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the *> eigenvalues of L(+) D(+) L(+)^T is relatively isolated. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix (subblock, if the matrix split). *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The N diagonal elements of the diagonal matrix D. *> \endverbatim *> *> \param[in] L *> \verbatim *> L is REAL array, dimension (N-1) *> The (N-1) subdiagonal elements of the unit bidiagonal *> matrix L. *> \endverbatim *> *> \param[in] LD *> \verbatim *> LD is REAL array, dimension (N-1) *> The (N-1) elements L(i)*D(i). *> \endverbatim *> *> \param[in] CLSTRT *> \verbatim *> CLSTRT is INTEGER *> The index of the first eigenvalue in the cluster. *> \endverbatim *> *> \param[in] CLEND *> \verbatim *> CLEND is INTEGER *> The index of the last eigenvalue in the cluster. *> \endverbatim *> *> \param[in] W *> \verbatim *> W is REAL array, dimension *> dimension is >= (CLEND-CLSTRT+1) *> The eigenvalue APPROXIMATIONS of L D L^T in ascending order. *> W( CLSTRT ) through W( CLEND ) form the cluster of relatively *> close eigenalues. *> \endverbatim *> *> \param[in,out] WGAP *> \verbatim *> WGAP is REAL array, dimension *> dimension is >= (CLEND-CLSTRT+1) *> The separation from the right neighbor eigenvalue in W. *> \endverbatim *> *> \param[in] WERR *> \verbatim *> WERR is REAL array, dimension *> dimension is >= (CLEND-CLSTRT+1) *> WERR contain the semiwidth of the uncertainty *> interval of the corresponding eigenvalue APPROXIMATION in W *> \endverbatim *> *> \param[in] SPDIAM *> \verbatim *> SPDIAM is REAL *> estimate of the spectral diameter obtained from the *> Gerschgorin intervals *> \endverbatim *> *> \param[in] CLGAPL *> \verbatim *> CLGAPL is REAL *> \endverbatim *> *> \param[in] CLGAPR *> \verbatim *> CLGAPR is REAL *> absolute gap on each end of the cluster. *> Set by the calling routine to protect against shifts too close *> to eigenvalues outside the cluster. *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is REAL *> The minimum pivot allowed in the Sturm sequence. *> \endverbatim *> *> \param[out] SIGMA *> \verbatim *> SIGMA is REAL *> The shift used to form L(+) D(+) L(+)^T. *> \endverbatim *> *> \param[out] DPLUS *> \verbatim *> DPLUS is REAL array, dimension (N) *> The N diagonal elements of the diagonal matrix D(+). *> \endverbatim *> *> \param[out] LPLUS *> \verbatim *> LPLUS is REAL array, dimension (N-1) *> The first (N-1) elements of LPLUS contain the subdiagonal *> elements of the unit bidiagonal matrix L(+). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (2*N) *> Workspace. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> Signals processing OK (=0) or failure (=1) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larrf * *> \par Contributors: * ================== *> *> Beresford Parlett, University of California, Berkeley, USA \n *> Jim Demmel, University of California, Berkeley, USA \n *> Inderjit Dhillon, University of Texas, Austin, USA \n *> Osni Marques, LBNL/NERSC, USA \n *> Christof Voemel, University of California, Berkeley, USA * * ===================================================================== SUBROUTINE SLARRF( N, D, L, LD, CLSTRT, CLEND, $ W, WGAP, WERR, $ SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, $ DPLUS, LPLUS, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER CLSTRT, CLEND, INFO, N REAL CLGAPL, CLGAPR, PIVMIN, SIGMA, SPDIAM * .. * .. Array Arguments .. REAL D( * ), DPLUS( * ), L( * ), LD( * ), $ LPLUS( * ), W( * ), WGAP( * ), WERR( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL MAXGROWTH1, MAXGROWTH2, ONE, QUART, TWO PARAMETER ( ONE = 1.0E0, TWO = 2.0E0, $ QUART = 0.25E0, $ MAXGROWTH1 = 8.E0, $ MAXGROWTH2 = 8.E0 ) * .. * .. Local Scalars .. LOGICAL DORRR1, FORCER, NOFAIL, SAWNAN1, SAWNAN2, TRYRRR1 INTEGER I, INDX, KTRY, KTRYMAX, SLEFT, SRIGHT, SHIFT PARAMETER ( KTRYMAX = 1, SLEFT = 1, SRIGHT = 2 ) REAL AVGAP, BESTSHIFT, CLWDTH, EPS, FACT, FAIL, $ FAIL2, GROWTHBOUND, LDELTA, LDMAX, LSIGMA, $ MAX1, MAX2, MINGAP, OLDP, PROD, RDELTA, RDMAX, $ RRR1, RRR2, RSIGMA, S, SMLGROWTH, TMP, ZNM2 * .. * .. External Functions .. LOGICAL SISNAN REAL SLAMCH EXTERNAL SISNAN, SLAMCH * .. * .. External Subroutines .. EXTERNAL SCOPY * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.LE.0 ) THEN RETURN END IF * FACT = REAL(2**KTRYMAX) EPS = SLAMCH( 'Precision' ) SHIFT = 0 FORCER = .FALSE. * Note that we cannot guarantee that for any of the shifts tried, * the factorization has a small or even moderate element growth. * There could be Ritz values at both ends of the cluster and despite * backing off, there are examples where all factorizations tried * (in IEEE mode, allowing zero pivots & infinities) have INFINITE * element growth. * For this reason, we should use PIVMIN in this subroutine so that at * least the L D L^T factorization exists. It can be checked afterwards * whether the element growth caused bad residuals/orthogonality. * Decide whether the code should accept the best among all * representations despite large element growth or signal INFO=1 * Setting NOFAIL to .FALSE. for quick fix for bug 113 NOFAIL = .FALSE. * * Compute the average gap length of the cluster CLWDTH = ABS(W(CLEND)-W(CLSTRT)) + WERR(CLEND) + WERR(CLSTRT) AVGAP = CLWDTH / REAL(CLEND-CLSTRT) MINGAP = MIN(CLGAPL, CLGAPR) * Initial values for shifts to both ends of cluster LSIGMA = MIN(W( CLSTRT ),W( CLEND )) - WERR( CLSTRT ) RSIGMA = MAX(W( CLSTRT ),W( CLEND )) + WERR( CLEND ) * Use a small fudge to make sure that we really shift to the outside LSIGMA = LSIGMA - ABS(LSIGMA)* TWO * EPS RSIGMA = RSIGMA + ABS(RSIGMA)* TWO * EPS * Compute upper bounds for how much to back off the initial shifts LDMAX = QUART * MINGAP + TWO * PIVMIN RDMAX = QUART * MINGAP + TWO * PIVMIN LDELTA = MAX(AVGAP,WGAP( CLSTRT ))/FACT RDELTA = MAX(AVGAP,WGAP( CLEND-1 ))/FACT * * Initialize the record of the best representation found * S = SLAMCH( 'S' ) SMLGROWTH = ONE / S FAIL = REAL(N-1)*MINGAP/(SPDIAM*EPS) FAIL2 = REAL(N-1)*MINGAP/(SPDIAM*SQRT(EPS)) BESTSHIFT = LSIGMA * * while (KTRY <= KTRYMAX) KTRY = 0 GROWTHBOUND = MAXGROWTH1*SPDIAM 5 CONTINUE SAWNAN1 = .FALSE. SAWNAN2 = .FALSE. * Ensure that we do not back off too much of the initial shifts LDELTA = MIN(LDMAX,LDELTA) RDELTA = MIN(RDMAX,RDELTA) * Compute the element growth when shifting to both ends of the cluster * accept the shift if there is no element growth at one of the two ends * Left end S = -LSIGMA DPLUS( 1 ) = D( 1 ) + S IF(ABS(DPLUS(1)).LT.PIVMIN) THEN DPLUS(1) = -PIVMIN * Need to set SAWNAN1 because refined RRR test should not be used * in this case SAWNAN1 = .TRUE. ENDIF MAX1 = ABS( DPLUS( 1 ) ) DO 6 I = 1, N - 1 LPLUS( I ) = LD( I ) / DPLUS( I ) S = S*LPLUS( I )*L( I ) - LSIGMA DPLUS( I+1 ) = D( I+1 ) + S IF(ABS(DPLUS(I+1)).LT.PIVMIN) THEN DPLUS(I+1) = -PIVMIN * Need to set SAWNAN1 because refined RRR test should not be used * in this case SAWNAN1 = .TRUE. ENDIF MAX1 = MAX( MAX1,ABS(DPLUS(I+1)) ) 6 CONTINUE SAWNAN1 = SAWNAN1 .OR. SISNAN( MAX1 ) IF( FORCER .OR. $ (MAX1.LE.GROWTHBOUND .AND. .NOT.SAWNAN1 ) ) THEN SIGMA = LSIGMA SHIFT = SLEFT GOTO 100 ENDIF * Right end S = -RSIGMA WORK( 1 ) = D( 1 ) + S IF(ABS(WORK(1)).LT.PIVMIN) THEN WORK(1) = -PIVMIN * Need to set SAWNAN2 because refined RRR test should not be used * in this case SAWNAN2 = .TRUE. ENDIF MAX2 = ABS( WORK( 1 ) ) DO 7 I = 1, N - 1 WORK( N+I ) = LD( I ) / WORK( I ) S = S*WORK( N+I )*L( I ) - RSIGMA WORK( I+1 ) = D( I+1 ) + S IF(ABS(WORK(I+1)).LT.PIVMIN) THEN WORK(I+1) = -PIVMIN * Need to set SAWNAN2 because refined RRR test should not be used * in this case SAWNAN2 = .TRUE. ENDIF MAX2 = MAX( MAX2,ABS(WORK(I+1)) ) 7 CONTINUE SAWNAN2 = SAWNAN2 .OR. SISNAN( MAX2 ) IF( FORCER .OR. $ (MAX2.LE.GROWTHBOUND .AND. .NOT.SAWNAN2 ) ) THEN SIGMA = RSIGMA SHIFT = SRIGHT GOTO 100 ENDIF * If we are at this point, both shifts led to too much element growth * Record the better of the two shifts (provided it didn't lead to NaN) IF(SAWNAN1.AND.SAWNAN2) THEN * both MAX1 and MAX2 are NaN GOTO 50 ELSE IF( .NOT.SAWNAN1 ) THEN INDX = 1 IF(MAX1.LE.SMLGROWTH) THEN SMLGROWTH = MAX1 BESTSHIFT = LSIGMA ENDIF ENDIF IF( .NOT.SAWNAN2 ) THEN IF(SAWNAN1 .OR. MAX2.LE.MAX1) INDX = 2 IF(MAX2.LE.SMLGROWTH) THEN SMLGROWTH = MAX2 BESTSHIFT = RSIGMA ENDIF ENDIF ENDIF * If we are here, both the left and the right shift led to * element growth. If the element growth is moderate, then * we may still accept the representation, if it passes a * refined test for RRR. This test supposes that no NaN occurred. * Moreover, we use the refined RRR test only for isolated clusters. IF((CLWDTH.LT.MINGAP/REAL(128)) .AND. $ (MIN(MAX1,MAX2).LT.FAIL2) $ .AND.(.NOT.SAWNAN1).AND.(.NOT.SAWNAN2)) THEN DORRR1 = .TRUE. ELSE DORRR1 = .FALSE. ENDIF TRYRRR1 = .TRUE. IF( TRYRRR1 .AND. DORRR1 ) THEN IF(INDX.EQ.1) THEN TMP = ABS( DPLUS( N ) ) ZNM2 = ONE PROD = ONE OLDP = ONE DO 15 I = N-1, 1, -1 IF( PROD .LE. EPS ) THEN PROD = $ ((DPLUS(I+1)*WORK(N+I+1))/(DPLUS(I)*WORK(N+I)))*OLDP ELSE PROD = PROD*ABS(WORK(N+I)) END IF OLDP = PROD ZNM2 = ZNM2 + PROD**2 TMP = MAX( TMP, ABS( DPLUS( I ) * PROD )) 15 CONTINUE RRR1 = TMP/( SPDIAM * SQRT( ZNM2 ) ) IF (RRR1.LE.MAXGROWTH2) THEN SIGMA = LSIGMA SHIFT = SLEFT GOTO 100 ENDIF ELSE IF(INDX.EQ.2) THEN TMP = ABS( WORK( N ) ) ZNM2 = ONE PROD = ONE OLDP = ONE DO 16 I = N-1, 1, -1 IF( PROD .LE. EPS ) THEN PROD = ((WORK(I+1)*LPLUS(I+1))/(WORK(I)*LPLUS(I)))*OLDP ELSE PROD = PROD*ABS(LPLUS(I)) END IF OLDP = PROD ZNM2 = ZNM2 + PROD**2 TMP = MAX( TMP, ABS( WORK( I ) * PROD )) 16 CONTINUE RRR2 = TMP/( SPDIAM * SQRT( ZNM2 ) ) IF (RRR2.LE.MAXGROWTH2) THEN SIGMA = RSIGMA SHIFT = SRIGHT GOTO 100 ENDIF END IF ENDIF 50 CONTINUE IF (KTRY.LT.KTRYMAX) THEN * If we are here, both shifts failed also the RRR test. * Back off to the outside LSIGMA = MAX( LSIGMA - LDELTA, $ LSIGMA - LDMAX) RSIGMA = MIN( RSIGMA + RDELTA, $ RSIGMA + RDMAX ) LDELTA = TWO * LDELTA RDELTA = TWO * RDELTA KTRY = KTRY + 1 GOTO 5 ELSE * None of the representations investigated satisfied our * criteria. Take the best one we found. IF((SMLGROWTH.LT.FAIL).OR.NOFAIL) THEN LSIGMA = BESTSHIFT RSIGMA = BESTSHIFT FORCER = .TRUE. GOTO 5 ELSE INFO = 1 RETURN ENDIF END IF 100 CONTINUE IF (SHIFT.EQ.SLEFT) THEN ELSEIF (SHIFT.EQ.SRIGHT) THEN * store new L and D back into DPLUS, LPLUS CALL SCOPY( N, WORK, 1, DPLUS, 1 ) CALL SCOPY( N-1, WORK(N+1), 1, LPLUS, 1 ) ENDIF RETURN * * End of SLARRF * END