numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slarrk.f | 6630B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
*> \brief \b SLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLARRK + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrk.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrk.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrk.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLARRK( N, IW, GL, GU, * D, E2, PIVMIN, RELTOL, W, WERR, INFO) * * .. Scalar Arguments .. * INTEGER INFO, IW, N * REAL PIVMIN, RELTOL, GL, GU, W, WERR * .. * .. Array Arguments .. * REAL D( * ), E2( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLARRK computes one eigenvalue of a symmetric tridiagonal *> matrix T to suitable accuracy. This is an auxiliary code to be *> called from SSTEMR. *> *> To avoid overflow, the matrix must be scaled so that its *> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest *> accuracy, it should not be much smaller than that. *> *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal *> Matrix", Report CS41, Computer Science Dept., Stanford *> University, July 21, 1966. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the tridiagonal matrix T. N >= 0. *> \endverbatim *> *> \param[in] IW *> \verbatim *> IW is INTEGER *> The index of the eigenvalues to be returned. *> \endverbatim *> *> \param[in] GL *> \verbatim *> GL is REAL *> \endverbatim *> *> \param[in] GU *> \verbatim *> GU is REAL *> An upper and a lower bound on the eigenvalue. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (N) *> The n diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] E2 *> \verbatim *> E2 is REAL array, dimension (N-1) *> The (n-1) squared off-diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[in] PIVMIN *> \verbatim *> PIVMIN is REAL *> The minimum pivot allowed in the Sturm sequence for T. *> \endverbatim *> *> \param[in] RELTOL *> \verbatim *> RELTOL is REAL *> The minimum relative width of an interval. When an interval *> is narrower than RELTOL times the larger (in *> magnitude) endpoint, then it is considered to be *> sufficiently small, i.e., converged. Note: this should *> always be at least radix*machine epsilon. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is REAL *> \endverbatim *> *> \param[out] WERR *> \verbatim *> WERR is REAL *> The error bound on the corresponding eigenvalue approximation *> in W. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: Eigenvalue converged *> = -1: Eigenvalue did NOT converge *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> FUDGE REAL , default = 2 *> A "fudge factor" to widen the Gershgorin intervals. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larrk * * ===================================================================== SUBROUTINE SLARRK( N, IW, GL, GU, $ D, E2, PIVMIN, RELTOL, W, WERR, INFO) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, IW, N REAL PIVMIN, RELTOL, GL, GU, W, WERR * .. * .. Array Arguments .. REAL D( * ), E2( * ) * .. * * ===================================================================== * * .. Parameters .. REAL FUDGE, HALF, TWO, ZERO PARAMETER ( HALF = 0.5E0, TWO = 2.0E0, $ FUDGE = TWO, ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER I, IT, ITMAX, NEGCNT REAL ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1, $ TMP2, TNORM * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN INFO = 0 RETURN END IF * * Get machine constants EPS = SLAMCH( 'P' ) TNORM = MAX( ABS( GL ), ABS( GU ) ) RTOLI = RELTOL ATOLI = FUDGE*TWO*PIVMIN ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) / $ LOG( TWO ) ) + 2 INFO = -1 LEFT = GL - FUDGE*TNORM*EPS*REAL( N ) - FUDGE*TWO*PIVMIN RIGHT = GU + FUDGE*TNORM*EPS*REAL( N ) + FUDGE*TWO*PIVMIN IT = 0 10 CONTINUE * * Check if interval converged or maximum number of iterations reached * TMP1 = ABS( RIGHT - LEFT ) TMP2 = MAX( ABS(RIGHT), ABS(LEFT) ) IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN INFO = 0 GOTO 30 ENDIF IF(IT.GT.ITMAX) $ GOTO 30 * * Count number of negative pivots for mid-point * IT = IT + 1 MID = HALF * (LEFT + RIGHT) NEGCNT = 0 TMP1 = D( 1 ) - MID IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN IF( TMP1.LE.ZERO ) $ NEGCNT = NEGCNT + 1 * DO 20 I = 2, N TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID IF( ABS( TMP1 ).LT.PIVMIN ) $ TMP1 = -PIVMIN IF( TMP1.LE.ZERO ) $ NEGCNT = NEGCNT + 1 20 CONTINUE IF(NEGCNT.GE.IW) THEN RIGHT = MID ELSE LEFT = MID ENDIF GOTO 10 30 CONTINUE * * Converged or maximum number of iterations reached * W = HALF * (LEFT + RIGHT) WERR = HALF * ABS( RIGHT - LEFT ) RETURN * * End of SLARRK * END