numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slasd0.f | 9142B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
*> \brief \b SLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by sbdsdc. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLASD0 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd0.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd0.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd0.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, * WORK, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE * .. * .. Array Arguments .. * INTEGER IWORK( * ) * REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Using a divide and conquer approach, SLASD0 computes the singular *> value decomposition (SVD) of a real upper bidiagonal N-by-M *> matrix B with diagonal D and offdiagonal E, where M = N + SQRE. *> The algorithm computes orthogonal matrices U and VT such that *> B = U * S * VT. The singular values S are overwritten on D. *> *> A related subroutine, SLASDA, computes only the singular values, *> and optionally, the singular vectors in compact form. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, the row dimension of the upper bidiagonal matrix. *> This is also the dimension of the main diagonal array D. *> \endverbatim *> *> \param[in] SQRE *> \verbatim *> SQRE is INTEGER *> Specifies the column dimension of the bidiagonal matrix. *> = 0: The bidiagonal matrix has column dimension M = N; *> = 1: The bidiagonal matrix has column dimension M = N+1; *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is REAL array, dimension (N) *> On entry D contains the main diagonal of the bidiagonal *> matrix. *> On exit D, if INFO = 0, contains its singular values. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is REAL array, dimension (M-1) *> Contains the subdiagonal entries of the bidiagonal matrix. *> On exit, E has been destroyed. *> \endverbatim *> *> \param[in,out] U *> \verbatim *> U is REAL array, dimension (LDU, N) *> On exit, U contains the left singular vectors, *> if U passed in as (N, N) Identity. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> On entry, leading dimension of U. *> \endverbatim *> *> \param[in,out] VT *> \verbatim *> VT is REAL array, dimension (LDVT, M) *> On exit, VT**T contains the right singular vectors, *> if VT passed in as (M, M) Identity. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> On entry, leading dimension of VT. *> \endverbatim *> *> \param[in] SMLSIZ *> \verbatim *> SMLSIZ is INTEGER *> On entry, maximum size of the subproblems at the *> bottom of the computation tree. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (8*N) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (3*M**2+2*M) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, a singular value did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lasd0 * *> \par Contributors: * ================== *> *> Ming Gu and Huan Ren, Computer Science Division, University of *> California at Berkeley, USA *> * ===================================================================== SUBROUTINE SLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, $ IWORK, $ WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDU, LDVT, N, SMLSIZ, SQRE * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL D( * ), E( * ), U( LDU, * ), VT( LDVT, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK, $ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR, $ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI REAL ALPHA, BETA * .. * .. External Subroutines .. EXTERNAL SLASD1, SLASDQ, SLASDT, XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -2 END IF * M = N + SQRE * IF( LDU.LT.N ) THEN INFO = -6 ELSE IF( LDVT.LT.M ) THEN INFO = -8 ELSE IF( SMLSIZ.LT.3 ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASD0', -INFO ) RETURN END IF * * If the input matrix is too small, call SLASDQ to find the SVD. * IF( N.LE.SMLSIZ ) THEN CALL SLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, $ U, $ LDU, WORK, INFO ) RETURN END IF * * Set up the computation tree. * INODE = 1 NDIML = INODE + N NDIMR = NDIML + N IDXQ = NDIMR + N IWK = IDXQ + N CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), $ IWORK( NDIMR ), SMLSIZ ) * * For the nodes on bottom level of the tree, solve * their subproblems by SLASDQ. * NDB1 = ( ND+1 ) / 2 NCC = 0 DO 30 I = NDB1, ND * * IC : center row of each node * NL : number of rows of left subproblem * NR : number of rows of right subproblem * NLF: starting row of the left subproblem * NRF: starting row of the right subproblem * I1 = I - 1 IC = IWORK( INODE+I1 ) NL = IWORK( NDIML+I1 ) NLP1 = NL + 1 NR = IWORK( NDIMR+I1 ) NRP1 = NR + 1 NLF = IC - NL NRF = IC + 1 SQREI = 1 CALL SLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), $ E( NLF ), $ VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU, $ U( NLF, NLF ), LDU, WORK, INFO ) IF( INFO.NE.0 ) THEN RETURN END IF ITEMP = IDXQ + NLF - 2 DO 10 J = 1, NL IWORK( ITEMP+J ) = J 10 CONTINUE IF( I.EQ.ND ) THEN SQREI = SQRE ELSE SQREI = 1 END IF NRP1 = NR + SQREI CALL SLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), $ E( NRF ), $ VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU, $ U( NRF, NRF ), LDU, WORK, INFO ) IF( INFO.NE.0 ) THEN RETURN END IF ITEMP = IDXQ + IC DO 20 J = 1, NR IWORK( ITEMP+J-1 ) = J 20 CONTINUE 30 CONTINUE * * Now conquer each subproblem bottom-up. * DO 50 LVL = NLVL, 1, -1 * * Find the first node LF and last node LL on the * current level LVL. * IF( LVL.EQ.1 ) THEN LF = 1 LL = 1 ELSE LF = 2**( LVL-1 ) LL = 2*LF - 1 END IF DO 40 I = LF, LL IM1 = I - 1 IC = IWORK( INODE+IM1 ) NL = IWORK( NDIML+IM1 ) NR = IWORK( NDIMR+IM1 ) NLF = IC - NL IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN SQREI = SQRE ELSE SQREI = 1 END IF IDXQC = IDXQ + NLF - 1 ALPHA = D( IC ) BETA = E( IC ) CALL SLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA, $ U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT, $ IWORK( IDXQC ), IWORK( IWK ), WORK, INFO ) * * Report the possible convergence failure. * IF( INFO.NE.0 ) THEN RETURN END IF 40 CONTINUE 50 CONTINUE * RETURN * * End of SLASD0 * END