numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/slasdq.f | 12904B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
*> \brief \b SLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLASDQ + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasdq.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasdq.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasdq.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, * U, LDU, C, LDC, WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE * .. * .. Array Arguments .. * REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), * $ VT( LDVT, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLASDQ computes the singular value decomposition (SVD) of a real *> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal *> E, accumulating the transformations if desired. Letting B denote *> the input bidiagonal matrix, the algorithm computes orthogonal *> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose *> of P). The singular values S are overwritten on D. *> *> The input matrix U is changed to U * Q if desired. *> The input matrix VT is changed to P**T * VT if desired. *> The input matrix C is changed to Q**T * C if desired. *> *> See "Computing Small Singular Values of Bidiagonal Matrices With *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, *> LAPACK Working Note #3, for a detailed description of the algorithm. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the input bidiagonal matrix *> is upper or lower bidiagonal, and whether it is square are *> not. *> UPLO = 'U' or 'u' B is upper bidiagonal. *> UPLO = 'L' or 'l' B is lower bidiagonal. *> \endverbatim *> *> \param[in] SQRE *> \verbatim *> SQRE is INTEGER *> = 0: then the input matrix is N-by-N. *> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and *> (N+1)-by-N if UPLU = 'L'. *> *> The bidiagonal matrix has *> N = NL + NR + 1 rows and *> M = N + SQRE >= N columns. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the number of rows and columns *> in the matrix. N must be at least 0. *> \endverbatim *> *> \param[in] NCVT *> \verbatim *> NCVT is INTEGER *> On entry, NCVT specifies the number of columns of *> the matrix VT. NCVT must be at least 0. *> \endverbatim *> *> \param[in] NRU *> \verbatim *> NRU is INTEGER *> On entry, NRU specifies the number of rows of *> the matrix U. NRU must be at least 0. *> \endverbatim *> *> \param[in] NCC *> \verbatim *> NCC is INTEGER *> On entry, NCC specifies the number of columns of *> the matrix C. NCC must be at least 0. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is REAL array, dimension (N) *> On entry, D contains the diagonal entries of the *> bidiagonal matrix whose SVD is desired. On normal exit, *> D contains the singular values in ascending order. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is REAL array. *> dimension is (N-1) if SQRE = 0 and N if SQRE = 1. *> On entry, the entries of E contain the offdiagonal entries *> of the bidiagonal matrix whose SVD is desired. On normal *> exit, E will contain 0. If the algorithm does not converge, *> D and E will contain the diagonal and superdiagonal entries *> of a bidiagonal matrix orthogonally equivalent to the one *> given as input. *> \endverbatim *> *> \param[in,out] VT *> \verbatim *> VT is REAL array, dimension (LDVT, NCVT) *> On entry, contains a matrix which on exit has been *> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0 *> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> On entry, LDVT specifies the leading dimension of VT as *> declared in the calling (sub) program. LDVT must be at *> least 1. If NCVT is nonzero LDVT must also be at least N. *> \endverbatim *> *> \param[in,out] U *> \verbatim *> U is REAL array, dimension (LDU, N) *> On entry, contains a matrix which on exit has been *> postmultiplied by Q, dimension NRU-by-N if SQRE = 0 *> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> On entry, LDU specifies the leading dimension of U as *> declared in the calling (sub) program. LDU must be at *> least max( 1, NRU ) . *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is REAL array, dimension (LDC, NCC) *> On entry, contains an N-by-NCC matrix which on exit *> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0 *> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> On entry, LDC specifies the leading dimension of C as *> declared in the calling (sub) program. LDC must be at *> least 1. If NCC is nonzero, LDC must also be at least N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (4*N) *> Workspace. Only referenced if one of NCVT, NRU, or NCC is *> nonzero, and if N is at least 2. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> On exit, a value of 0 indicates a successful exit. *> If INFO < 0, argument number -INFO is illegal. *> If INFO > 0, the algorithm did not converge, and INFO *> specifies how many superdiagonals did not converge. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lasdq * *> \par Contributors: * ================== *> *> Ming Gu and Huan Ren, Computer Science Division, University of *> California at Berkeley, USA *> * ===================================================================== SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, $ LDVT, $ U, LDU, C, LDC, WORK, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE * .. * .. Array Arguments .. REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), $ VT( LDVT, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL ROTATE INTEGER I, ISUB, IUPLO, J, NP1, SQRE1 REAL CS, R, SMIN, SN * .. * .. External Subroutines .. EXTERNAL SBDSQR, SLARTG, SLASR, SSWAP, $ XERBLA * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IUPLO = 0 IF( LSAME( UPLO, 'U' ) ) $ IUPLO = 1 IF( LSAME( UPLO, 'L' ) ) $ IUPLO = 2 IF( IUPLO.EQ.0 ) THEN INFO = -1 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NCVT.LT.0 ) THEN INFO = -4 ELSE IF( NRU.LT.0 ) THEN INFO = -5 ELSE IF( NCC.LT.0 ) THEN INFO = -6 ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN INFO = -10 ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN INFO = -12 ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASDQ', -INFO ) RETURN END IF IF( N.EQ.0 ) $ RETURN * * ROTATE is true if any singular vectors desired, false otherwise * ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 ) NP1 = N + 1 SQRE1 = SQRE * * If matrix non-square upper bidiagonal, rotate to be lower * bidiagonal. The rotations are on the right. * IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN DO 10 I = 1, N - 1 CALL SLARTG( D( I ), E( I ), CS, SN, R ) D( I ) = R E( I ) = SN*D( I+1 ) D( I+1 ) = CS*D( I+1 ) IF( ROTATE ) THEN WORK( I ) = CS WORK( N+I ) = SN END IF 10 CONTINUE CALL SLARTG( D( N ), E( N ), CS, SN, R ) D( N ) = R E( N ) = ZERO IF( ROTATE ) THEN WORK( N ) = CS WORK( N+N ) = SN END IF IUPLO = 2 SQRE1 = 0 * * Update singular vectors if desired. * IF( NCVT.GT.0 ) $ CALL SLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ), $ WORK( NP1 ), VT, LDVT ) END IF * * If matrix lower bidiagonal, rotate to be upper bidiagonal * by applying Givens rotations on the left. * IF( IUPLO.EQ.2 ) THEN DO 20 I = 1, N - 1 CALL SLARTG( D( I ), E( I ), CS, SN, R ) D( I ) = R E( I ) = SN*D( I+1 ) D( I+1 ) = CS*D( I+1 ) IF( ROTATE ) THEN WORK( I ) = CS WORK( N+I ) = SN END IF 20 CONTINUE * * If matrix (N+1)-by-N lower bidiagonal, one additional * rotation is needed. * IF( SQRE1.EQ.1 ) THEN CALL SLARTG( D( N ), E( N ), CS, SN, R ) D( N ) = R IF( ROTATE ) THEN WORK( N ) = CS WORK( N+N ) = SN END IF END IF * * Update singular vectors if desired. * IF( NRU.GT.0 ) THEN IF( SQRE1.EQ.0 ) THEN CALL SLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), $ WORK( NP1 ), U, LDU ) ELSE CALL SLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ), $ WORK( NP1 ), U, LDU ) END IF END IF IF( NCC.GT.0 ) THEN IF( SQRE1.EQ.0 ) THEN CALL SLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), $ WORK( NP1 ), C, LDC ) ELSE CALL SLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ), $ WORK( NP1 ), C, LDC ) END IF END IF END IF * * Call SBDSQR to compute the SVD of the reduced real * N-by-N upper bidiagonal matrix. * CALL SBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, $ LDC, WORK, INFO ) * * Sort the singular values into ascending order (insertion sort on * singular values, but only one transposition per singular vector) * DO 40 I = 1, N * * Scan for smallest D(I). * ISUB = I SMIN = D( I ) DO 30 J = I + 1, N IF( D( J ).LT.SMIN ) THEN ISUB = J SMIN = D( J ) END IF 30 CONTINUE IF( ISUB.NE.I ) THEN * * Swap singular values and vectors. * D( ISUB ) = D( I ) D( I ) = SMIN IF( NCVT.GT.0 ) $ CALL SSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), $ LDVT ) IF( NRU.GT.0 ) $ CALL SSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 ) IF( NCC.GT.0 ) $ CALL SSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC ) END IF 40 CONTINUE * RETURN * * End of SLASDQ * END