numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sorbdb4.f | 12047B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
*> \brief \b SORBDB4 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SORBDB4 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb4.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb4.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb4.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI, * TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 * .. * .. Array Arguments .. * REAL PHI(*), THETA(*) * REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), * $ WORK(*), X11(LDX11,*), X21(LDX21,*) * .. * * *> \par Purpose: * ============= *> *>\verbatim *> *> SORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny *> matrix X with orthonormal columns: *> *> [ B11 ] *> [ X11 ] [ P1 | ] [ 0 ] *> [-----] = [---------] [-----] Q1**T . *> [ X21 ] [ | P2 ] [ B21 ] *> [ 0 ] *> *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P, *> M-P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases in *> which M-Q is not the minimum dimension. *> *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P), *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by *> Householder vectors. *> *> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented *> implicitly by angles THETA, PHI. *> *>\endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows X11 plus the number of rows in X21. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows in X11. 0 <= P <= M. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is INTEGER *> The number of columns in X11 and X21. 0 <= Q <= M and *> M-Q <= min(P,M-P,Q). *> \endverbatim *> *> \param[in,out] X11 *> \verbatim *> X11 is REAL array, dimension (LDX11,Q) *> On entry, the top block of the matrix X to be reduced. On *> exit, the columns of tril(X11) specify reflectors for P1 and *> the rows of triu(X11,1) specify reflectors for Q1. *> \endverbatim *> *> \param[in] LDX11 *> \verbatim *> LDX11 is INTEGER *> The leading dimension of X11. LDX11 >= P. *> \endverbatim *> *> \param[in,out] X21 *> \verbatim *> X21 is REAL array, dimension (LDX21,Q) *> On entry, the bottom block of the matrix X to be reduced. On *> exit, the columns of tril(X21) specify reflectors for P2. *> \endverbatim *> *> \param[in] LDX21 *> \verbatim *> LDX21 is INTEGER *> The leading dimension of X21. LDX21 >= M-P. *> \endverbatim *> *> \param[out] THETA *> \verbatim *> THETA is REAL array, dimension (Q) *> The entries of the bidiagonal blocks B11, B21 are defined by *> THETA and PHI. See Further Details. *> \endverbatim *> *> \param[out] PHI *> \verbatim *> PHI is REAL array, dimension (Q-1) *> The entries of the bidiagonal blocks B11, B21 are defined by *> THETA and PHI. See Further Details. *> \endverbatim *> *> \param[out] TAUP1 *> \verbatim *> TAUP1 is REAL array, dimension (M-Q) *> The scalar factors of the elementary reflectors that define *> P1. *> \endverbatim *> *> \param[out] TAUP2 *> \verbatim *> TAUP2 is REAL array, dimension (M-Q) *> The scalar factors of the elementary reflectors that define *> P2. *> \endverbatim *> *> \param[out] TAUQ1 *> \verbatim *> TAUQ1 is REAL array, dimension (Q) *> The scalar factors of the elementary reflectors that define *> Q1. *> \endverbatim *> *> \param[out] PHANTOM *> \verbatim *> PHANTOM is REAL array, dimension (M) *> The routine computes an M-by-1 column vector Y that is *> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and *> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and *> Y(P+1:M), respectively. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= M-Q. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim *> * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup unbdb4 * *> \par Further Details: * ===================== *> *> \verbatim *> *> The upper-bidiagonal blocks B11, B21 are represented implicitly by *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry *> in each bidiagonal band is a product of a sine or cosine of a THETA *> with a sine or cosine of a PHI. See [1] or SORCSD for details. *> *> P1, P2, and Q1 are represented as products of elementary reflectors. *> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR *> and SORGLQ. *> \endverbatim * *> \par References: * ================ *> *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. *> Algorithms, 50(1):33-65, 2009. *> * ===================================================================== SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ PHI, $ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21 * .. * .. Array Arguments .. REAL PHI(*), THETA(*) REAL PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*), $ WORK(*), X11(LDX11,*), X21(LDX21,*) * .. * * ==================================================================== * * .. Parameters .. REAL NEGONE, ZERO PARAMETER ( NEGONE = -1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. REAL C, S INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF, $ LORBDB5, LWORKMIN, LWORKOPT LOGICAL LQUERY * .. * .. External Subroutines .. EXTERNAL SLARF1F, SLARFGP, SORBDB5, SROT, SSCAL, $ XERBLA * .. * .. External Functions .. REAL SNRM2 EXTERNAL SNRM2 * .. * .. Intrinsic Function .. INTRINSIC ATAN2, COS, MAX, SIN, SQRT * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 LQUERY = LWORK .EQ. -1 * IF( M .LT. 0 ) THEN INFO = -1 ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN INFO = -2 ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN INFO = -3 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN INFO = -5 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN INFO = -7 END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN ILARF = 2 LLARF = MAX( Q-1, P-1, M-P-1 ) IORBDB5 = 2 LORBDB5 = Q LWORKOPT = ILARF + LLARF - 1 LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 ) LWORKMIN = LWORKOPT WORK(1) = REAL( LWORKOPT ) IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN INFO = -14 END IF END IF IF( INFO .NE. 0 ) THEN CALL XERBLA( 'SORBDB4', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Reduce columns 1, ..., M-Q of X11 and X21 * DO I = 1, M-Q * IF( I .EQ. 1 ) THEN DO J = 1, M PHANTOM(J) = ZERO END DO CALL SORBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1, $ X11, LDX11, X21, LDX21, WORK(IORBDB5), $ LORBDB5, CHILDINFO ) CALL SSCAL( P, NEGONE, PHANTOM(1), 1 ) CALL SLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) ) CALL SLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, $ TAUP2(1) ) THETA(I) = ATAN2( PHANTOM(1), PHANTOM(P+1) ) C = COS( THETA(I) ) S = SIN( THETA(I) ) CALL SLARF1F( 'L', P, Q, PHANTOM(1), 1, TAUP1(1), X11, $ LDX11, WORK(ILARF) ) CALL SLARF1F( 'L', M-P, Q, PHANTOM(P+1), 1, TAUP2(1), $ X21, LDX21, WORK(ILARF) ) ELSE CALL SORBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1, $ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I), $ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO ) CALL SSCAL( P-I+1, NEGONE, X11(I,I-1), 1 ) CALL SLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, $ TAUP1(I) ) CALL SLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1, $ TAUP2(I) ) THETA(I) = ATAN2( X11(I,I-1), X21(I,I-1) ) C = COS( THETA(I) ) S = SIN( THETA(I) ) CALL SLARF1F( 'L', P-I+1, Q-I+1, X11(I,I-1), 1, TAUP1(I), $ X11(I,I), LDX11, WORK(ILARF) ) CALL SLARF1F( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1, $ TAUP2(I), X21(I,I), LDX21, WORK(ILARF) ) END IF * CALL SROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C ) CALL SLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) ) C = X21(I,I) CALL SLARF1F( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I), $ X11(I+1,I), LDX11, WORK(ILARF) ) CALL SLARF1F( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I), $ X21(I+1,I), LDX21, WORK(ILARF) ) IF( I .LT. M-Q ) THEN S = SQRT( SNRM2( P-I, X11(I+1,I), 1 )**2 $ + SNRM2( M-P-I, X21(I+1,I), 1 )**2 ) PHI(I) = ATAN2( S, C ) END IF * END DO * * Reduce the bottom-right portion of X11 to [ I 0 ] * DO I = M - Q + 1, P CALL SLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) ) CALL SLARF1F( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I), $ X11(I+1,I), LDX11, WORK(ILARF) ) CALL SLARF1F( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I), $ X21(M-Q+1,I), LDX21, WORK(ILARF) ) END DO * * Reduce the bottom-right portion of X21 to [ 0 I ] * DO I = P + 1, Q CALL SLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), $ LDX21, $ TAUQ1(I) ) CALL SLARF1F( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, $ TAUQ1(I), X21(M-Q+I-P+1,I), LDX21, $ WORK(ILARF) ) END DO * RETURN * * End of SORBDB4 * END