numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/sorcsd2by1.f | 27091B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
*> \brief \b SORCSD2BY1 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SORCSD2BY1 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorcsd2by1.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorcsd2by1.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorcsd2by1.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, * LDV1T, WORK, LWORK, IWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBU1, JOBU2, JOBV1T * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, * $ M, P, Q * .. * .. Array Arguments .. * REAL THETA(*) * REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), * $ X11(LDX11,*), X21(LDX21,*) * INTEGER IWORK(*) * .. * * *> \par Purpose: * ============= *> *>\verbatim *> *> SORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with *> orthonormal columns that has been partitioned into a 2-by-1 block *> structure: *> *> [ I1 0 0 ] *> [ 0 C 0 ] *> [ X11 ] [ U1 | ] [ 0 0 0 ] *> X = [-----] = [---------] [----------] V1**T . *> [ X21 ] [ | U2 ] [ 0 0 0 ] *> [ 0 S 0 ] *> [ 0 0 I2] *> *> X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P, *> (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R *> nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which *> R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a *> K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU1 *> \verbatim *> JOBU1 is CHARACTER *> = 'Y': U1 is computed; *> otherwise: U1 is not computed. *> \endverbatim *> *> \param[in] JOBU2 *> \verbatim *> JOBU2 is CHARACTER *> = 'Y': U2 is computed; *> otherwise: U2 is not computed. *> \endverbatim *> *> \param[in] JOBV1T *> \verbatim *> JOBV1T is CHARACTER *> = 'Y': V1T is computed; *> otherwise: V1T is not computed. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows in X. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows in X11. 0 <= P <= M. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is INTEGER *> The number of columns in X11 and X21. 0 <= Q <= M. *> \endverbatim *> *> \param[in,out] X11 *> \verbatim *> X11 is REAL array, dimension (LDX11,Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX11 *> \verbatim *> LDX11 is INTEGER *> The leading dimension of X11. LDX11 >= MAX(1,P). *> \endverbatim *> *> \param[in,out] X21 *> \verbatim *> X21 is REAL array, dimension (LDX21,Q) *> On entry, part of the orthogonal matrix whose CSD is desired. *> \endverbatim *> *> \param[in] LDX21 *> \verbatim *> LDX21 is INTEGER *> The leading dimension of X21. LDX21 >= MAX(1,M-P). *> \endverbatim *> *> \param[out] THETA *> \verbatim *> THETA is REAL array, dimension (R), in which R = *> MIN(P,M-P,Q,M-Q). *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). *> \endverbatim *> *> \param[out] U1 *> \verbatim *> U1 is REAL array, dimension (P) *> If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. *> \endverbatim *> *> \param[in] LDU1 *> \verbatim *> LDU1 is INTEGER *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= *> MAX(1,P). *> \endverbatim *> *> \param[out] U2 *> \verbatim *> U2 is REAL array, dimension (M-P) *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal *> matrix U2. *> \endverbatim *> *> \param[in] LDU2 *> \verbatim *> LDU2 is INTEGER *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= *> MAX(1,M-P). *> \endverbatim *> *> \param[out] V1T *> \verbatim *> V1T is REAL array, dimension (Q) *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal *> matrix V1**T. *> \endverbatim *> *> \param[in] LDV1T *> \verbatim *> LDV1T is INTEGER *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= *> MAX(1,Q). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), *> define the matrix in intermediate bidiagonal-block form *> remaining after nonconvergence. INFO specifies the number *> of nonzero PHI's. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the work array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: SBBCSD did not converge. See the description of WORK *> above for details. *> \endverbatim * *> \par References: * ================ *> *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. *> Algorithms, 50(1):33-65, 2009. * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup uncsd2by1 * * ===================================================================== SUBROUTINE SORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, $ LDX11, $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, $ LDV1T, WORK, LWORK, IWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBU1, JOBU2, JOBV1T INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, $ M, P, Q * .. * .. Array Arguments .. REAL THETA(*) REAL U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), $ X11(LDX11,*), X21(LDX21,*) INTEGER IWORK(*) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E, $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB, $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1, $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN, $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT, $ LWORKMIN, LWORKOPT, R LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T * .. * .. Local Arrays .. REAL DUM1(1), DUM2(1,1) * .. * .. External Subroutines .. EXTERNAL SBBCSD, SCOPY, SLACPY, SLAPMR, SLAPMT, $ SORBDB1, $ SORBDB2, SORBDB3, SORBDB4, SORGLQ, SORGQR, $ XERBLA * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Function .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 WANTU1 = LSAME( JOBU1, 'Y' ) WANTU2 = LSAME( JOBU2, 'Y' ) WANTV1T = LSAME( JOBV1T, 'Y' ) LQUERY = LWORK .EQ. -1 * IF( M .LT. 0 ) THEN INFO = -4 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -5 ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN INFO = -6 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN INFO = -8 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN INFO = -10 ELSE IF( WANTU1 .AND. LDU1 .LT. MAX( 1, P ) ) THEN INFO = -13 ELSE IF( WANTU2 .AND. LDU2 .LT. MAX( 1, M - P ) ) THEN INFO = -15 ELSE IF( WANTV1T .AND. LDV1T .LT. MAX( 1, Q ) ) THEN INFO = -17 END IF * R = MIN( P, M-P, Q, M-Q ) * * Compute workspace * * WORK layout: * |-------------------------------------------------------| * | LWORKOPT (1) | * |-------------------------------------------------------| * | PHI (MAX(1,R-1)) | * |-------------------------------------------------------| * | TAUP1 (MAX(1,P)) | B11D (R) | * | TAUP2 (MAX(1,M-P)) | B11E (R-1) | * | TAUQ1 (MAX(1,Q)) | B12D (R) | * |-----------------------------------------| B12E (R-1) | * | SORBDB WORK | SORGQR WORK | SORGLQ WORK | B21D (R) | * | | | | B21E (R-1) | * | | | | B22D (R) | * | | | | B22E (R-1) | * | | | | SBBCSD WORK | * |-------------------------------------------------------| * IF( INFO .EQ. 0 ) THEN IPHI = 2 IB11D = IPHI + MAX( 1, R-1 ) IB11E = IB11D + MAX( 1, R ) IB12D = IB11E + MAX( 1, R - 1 ) IB12E = IB12D + MAX( 1, R ) IB21D = IB12E + MAX( 1, R - 1 ) IB21E = IB21D + MAX( 1, R ) IB22D = IB21E + MAX( 1, R - 1 ) IB22E = IB22D + MAX( 1, R ) IBBCSD = IB22E + MAX( 1, R - 1 ) ITAUP1 = IPHI + MAX( 1, R-1 ) ITAUP2 = ITAUP1 + MAX( 1, P ) ITAUQ1 = ITAUP2 + MAX( 1, M-P ) IORBDB = ITAUQ1 + MAX( 1, Q ) IORGQR = ITAUQ1 + MAX( 1, Q ) IORGLQ = ITAUQ1 + MAX( 1, Q ) LORGQRMIN = 1 LORGQROPT = 1 LORGLQMIN = 1 LORGLQOPT = 1 IF( R .EQ. Q ) THEN CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ DUM1, DUM1, DUM1, DUM1, WORK, -1, $ CHILDINFO ) LORBDB = INT( WORK(1) ) IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1, $ CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) ENDIF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1, $ CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, M-P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SORGLQ( Q-1, Q-1, Q-1, V1T, LDV1T, $ DUM1, WORK(1), -1, CHILDINFO ) LORGLQMIN = MAX( LORGLQMIN, Q-1 ) LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) ) END IF CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, $ THETA, $ DUM1, U1, LDU1, U2, LDU2, V1T, LDV1T, DUM2, $ 1, DUM1, DUM1, DUM1, DUM1, DUM1, $ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO $ ) LBBCSD = INT( WORK(1) ) ELSE IF( R .EQ. P ) THEN CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1, $ CHILDINFO ) LORBDB = INT( WORK(1) ) IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, DUM1, $ WORK(1), -1, CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, P-1 ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SORGQR( M-P, M-P, Q, U2, LDU2, DUM1, WORK(1), -1, $ CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, M-P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1, $ CHILDINFO ) LORGLQMIN = MAX( LORGLQMIN, Q ) LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) ) END IF CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, $ THETA, $ DUM1, V1T, LDV1T, DUM2, 1, U1, LDU1, U2, $ LDU2, DUM1, DUM1, DUM1, DUM1, DUM1, $ DUM1, DUM1, DUM1, WORK(1), -1, CHILDINFO $ ) LBBCSD = INT( WORK(1) ) ELSE IF( R .EQ. M-P ) THEN CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1, $ CHILDINFO ) LORBDB = INT( WORK(1) ) IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SORGQR( P, P, Q, U1, LDU1, DUM1, WORK(1), -1, $ CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, DUM1, $ WORK(1), -1, CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, M-P-1 ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SORGLQ( Q, Q, R, V1T, LDV1T, DUM1, WORK(1), -1, $ CHILDINFO ) LORGLQMIN = MAX( LORGLQMIN, Q ) LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) ) END IF CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P, $ THETA, DUM1, DUM2, 1, V1T, LDV1T, U2, LDU2, $ U1, LDU1, DUM1, DUM1, DUM1, DUM1, $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1, $ CHILDINFO ) LBBCSD = INT( WORK(1) ) ELSE CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ DUM1, DUM1, DUM1, DUM1, DUM1, $ WORK(1), -1, CHILDINFO ) LORBDB = M + INT( WORK(1) ) IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SORGQR( P, P, M-Q, U1, LDU1, DUM1, WORK(1), -1, $ CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, DUM1, WORK(1), $ -1, CHILDINFO ) LORGQRMIN = MAX( LORGQRMIN, M-P ) LORGQROPT = MAX( LORGQROPT, INT( WORK(1) ) ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SORGLQ( Q, Q, Q, V1T, LDV1T, DUM1, WORK(1), -1, $ CHILDINFO ) LORGLQMIN = MAX( LORGLQMIN, Q ) LORGLQOPT = MAX( LORGLQOPT, INT( WORK(1) ) ) END IF CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q, $ THETA, DUM1, U2, LDU2, U1, LDU1, DUM2, 1, $ V1T, LDV1T, DUM1, DUM1, DUM1, DUM1, $ DUM1, DUM1, DUM1, DUM1, WORK(1), -1, $ CHILDINFO ) LBBCSD = INT( WORK(1) ) END IF LWORKMIN = MAX( IORBDB+LORBDB-1, $ IORGQR+LORGQRMIN-1, $ IORGLQ+LORGLQMIN-1, $ IBBCSD+LBBCSD-1 ) LWORKOPT = MAX( IORBDB+LORBDB-1, $ IORGQR+LORGQROPT-1, $ IORGLQ+LORGLQOPT-1, $ IBBCSD+LBBCSD-1 ) WORK(1) = REAL( LWORKOPT ) IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN INFO = -19 END IF END IF IF( INFO .NE. 0 ) THEN CALL XERBLA( 'SORCSD2BY1', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF LORGQR = LWORK-IORGQR+1 LORGLQ = LWORK-IORGLQ+1 * * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, * in which R = MIN(P,M-P,Q,M-Q) * IF( R .EQ. Q ) THEN * * Case 1: R = Q * * Simultaneously bidiagonalize X11 and X21 * CALL SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2), $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO ) * * Accumulate Householder reflectors * IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 ) CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), $ WORK(IORGQR), $ LORGQR, CHILDINFO ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 ) CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN V1T(1,1) = ONE DO J = 2, Q V1T(1,J) = ZERO V1T(J,1) = ZERO END DO CALL SLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2), $ LDV1T ) CALL SORGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, $ WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQ, CHILDINFO ) END IF * * Simultaneously diagonalize X11 and X21. * CALL SBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA, $ WORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, $ DUM2, 1, WORK(IB11D), WORK(IB11E), WORK(IB12D), $ WORK(IB12E), WORK(IB21D), WORK(IB21E), $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD, $ CHILDINFO ) * * Permute rows and columns to place zero submatrices in * preferred positions * IF( Q .GT. 0 .AND. WANTU2 ) THEN DO I = 1, Q IWORK(I) = M - P - Q + I END DO DO I = Q + 1, M - P IWORK(I) = I - Q END DO CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK ) END IF ELSE IF( R .EQ. P ) THEN * * Case 2: R = P * * Simultaneously bidiagonalize X11 and X21 * CALL SORBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2), $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO ) * * Accumulate Householder reflectors * IF( WANTU1 .AND. P .GT. 0 ) THEN U1(1,1) = ONE DO J = 2, P U1(1,J) = ZERO U1(J,1) = ZERO END DO CALL SLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), $ LDU1 ) CALL SORGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1), $ WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 ) CALL SORGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T ) CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQ, CHILDINFO ) END IF * * Simultaneously diagonalize X11 and X21. * CALL SBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA, $ WORK(IPHI), V1T, LDV1T, DUM1, 1, U1, LDU1, U2, $ LDU2, WORK(IB11D), WORK(IB11E), WORK(IB12D), $ WORK(IB12E), WORK(IB21D), WORK(IB21E), $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD, $ CHILDINFO ) * * Permute rows and columns to place identity submatrices in * preferred positions * IF( Q .GT. 0 .AND. WANTU2 ) THEN DO I = 1, Q IWORK(I) = M - P - Q + I END DO DO I = Q + 1, M - P IWORK(I) = I - Q END DO CALL SLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK ) END IF ELSE IF( R .EQ. M-P ) THEN * * Case 3: R = M-P * * Simultaneously bidiagonalize X11 and X21 * CALL SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2), $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO ) * * Accumulate Householder reflectors * IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 ) CALL SORGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), $ WORK(IORGQR), $ LORGQR, CHILDINFO ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN U2(1,1) = ONE DO J = 2, M-P U2(1,J) = ZERO U2(J,1) = ZERO END DO CALL SLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2), $ LDU2 ) CALL SORGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T ) CALL SORGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQ, CHILDINFO ) END IF * * Simultaneously diagonalize X11 and X21. * CALL SBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P, $ THETA, WORK(IPHI), DUM1, 1, V1T, LDV1T, U2, $ LDU2, U1, LDU1, WORK(IB11D), WORK(IB11E), $ WORK(IB12D), WORK(IB12E), WORK(IB21D), $ WORK(IB21E), WORK(IB22D), WORK(IB22E), $ WORK(IBBCSD), LBBCSD, CHILDINFO ) * * Permute rows and columns to place identity submatrices in * preferred positions * IF( Q .GT. R ) THEN DO I = 1, R IWORK(I) = Q - R + I END DO DO I = R + 1, Q IWORK(I) = I - R END DO IF( WANTU1 ) THEN CALL SLAPMT( .FALSE., P, Q, U1, LDU1, IWORK ) END IF IF( WANTV1T ) THEN CALL SLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK ) END IF END IF ELSE * * Case 4: R = M-Q * * Simultaneously bidiagonalize X11 and X21 * CALL SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, $ WORK(IPHI), WORK(ITAUP1), WORK(ITAUP2), $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M), $ LORBDB-M, CHILDINFO ) * * Accumulate Householder reflectors * IF( WANTU2 .AND. M-P .GT. 0 ) THEN CALL SCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 ) END IF IF( WANTU1 .AND. P .GT. 0 ) THEN CALL SCOPY( P, WORK(IORBDB), 1, U1, 1 ) DO J = 2, P U1(1,J) = ZERO END DO CALL SLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2), $ LDU1 ) CALL SORGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1), $ WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTU2 .AND. M-P .GT. 0 ) THEN DO J = 2, M-P U2(1,J) = ZERO END DO CALL SLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2), $ LDU2 ) CALL SORGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2), $ WORK(IORGQR), LORGQR, CHILDINFO ) END IF IF( WANTV1T .AND. Q .GT. 0 ) THEN CALL SLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T ) CALL SLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), $ LDX11, $ V1T(M-Q+1,M-Q+1), LDV1T ) CALL SLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21, $ V1T(P+1,P+1), LDV1T ) CALL SORGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1), $ WORK(IORGLQ), LORGLQ, CHILDINFO ) END IF * * Simultaneously diagonalize X11 and X21. * CALL SBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q, $ THETA, WORK(IPHI), U2, LDU2, U1, LDU1, DUM1, 1, $ V1T, LDV1T, WORK(IB11D), WORK(IB11E), WORK(IB12D), $ WORK(IB12E), WORK(IB21D), WORK(IB21E), $ WORK(IB22D), WORK(IB22E), WORK(IBBCSD), LBBCSD, $ CHILDINFO ) * * Permute rows and columns to place identity submatrices in * preferred positions * IF( P .GT. R ) THEN DO I = 1, R IWORK(I) = P - R + I END DO DO I = R + 1, P IWORK(I) = I - R END DO IF( WANTU1 ) THEN CALL SLAPMT( .FALSE., P, P, U1, LDU1, IWORK ) END IF IF( WANTV1T ) THEN CALL SLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK ) END IF END IF END IF * RETURN * * End of SORCSD2BY1 * END