numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ssbgv.f | 8480B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
*> \brief \b SSBGV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SSBGV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, * LDZ, WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBZ, UPLO * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N * .. * .. Array Arguments .. * REAL AB( LDAB, * ), BB( LDBB, * ), W( * ), * $ WORK( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SSBGV computes all the eigenvalues, and optionally, the eigenvectors *> of a real generalized symmetric-definite banded eigenproblem, of *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric *> and banded, and B is also positive definite. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBZ *> \verbatim *> JOBZ is CHARACTER*1 *> = 'N': Compute eigenvalues only; *> = 'V': Compute eigenvalues and eigenvectors. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangles of A and B are stored; *> = 'L': Lower triangles of A and B are stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] KA *> \verbatim *> KA is INTEGER *> The number of superdiagonals of the matrix A if UPLO = 'U', *> or the number of subdiagonals if UPLO = 'L'. KA >= 0. *> \endverbatim *> *> \param[in] KB *> \verbatim *> KB is INTEGER *> The number of superdiagonals of the matrix B if UPLO = 'U', *> or the number of subdiagonals if UPLO = 'L'. KB >= 0. *> \endverbatim *> *> \param[in,out] AB *> \verbatim *> AB is REAL array, dimension (LDAB, N) *> On entry, the upper or lower triangle of the symmetric band *> matrix A, stored in the first ka+1 rows of the array. The *> j-th column of A is stored in the j-th column of the array AB *> as follows: *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). *> *> On exit, the contents of AB are destroyed. *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KA+1. *> \endverbatim *> *> \param[in,out] BB *> \verbatim *> BB is REAL array, dimension (LDBB, N) *> On entry, the upper or lower triangle of the symmetric band *> matrix B, stored in the first kb+1 rows of the array. The *> j-th column of B is stored in the j-th column of the array BB *> as follows: *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). *> *> On exit, the factor S from the split Cholesky factorization *> B = S**T*S, as returned by SPBSTF. *> \endverbatim *> *> \param[in] LDBB *> \verbatim *> LDBB is INTEGER *> The leading dimension of the array BB. LDBB >= KB+1. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is REAL array, dimension (N) *> If INFO = 0, the eigenvalues in ascending order. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is REAL array, dimension (LDZ, N) *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of *> eigenvectors, with the i-th column of Z holding the *> eigenvector associated with W(i). The eigenvectors are *> normalized so that Z**T*B*Z = I. *> If JOBZ = 'N', then Z is not referenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1, and if *> JOBZ = 'V', LDZ >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (3*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, and i is: *> <= N: the algorithm failed to converge: *> i off-diagonal elements of an intermediate *> tridiagonal form did not converge to zero; *> > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF *> returned INFO = i: B is not positive definite. *> The factorization of B could not be completed and *> no eigenvalues or eigenvectors were computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hbgv * * ===================================================================== SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, $ Z, $ LDZ, WORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N * .. * .. Array Arguments .. REAL AB( LDAB, * ), BB( LDBB, * ), W( * ), $ WORK( * ), Z( LDZ, * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER, WANTZ CHARACTER VECT INTEGER IINFO, INDE, INDWRK * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SPBSTF, SSBGST, SSBTRD, SSTEQR, SSTERF, $ XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KA.LT.0 ) THEN INFO = -4 ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN INFO = -5 ELSE IF( LDAB.LT.KA+1 ) THEN INFO = -7 ELSE IF( LDBB.LT.KB+1 ) THEN INFO = -9 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSBGV', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Form a split Cholesky factorization of B. * CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem. * INDE = 1 INDWRK = INDE + N CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ, $ WORK( INDWRK ), IINFO ) * * Reduce to tridiagonal form. * IF( WANTZ ) THEN VECT = 'U' ELSE VECT = 'N' END IF CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, $ LDZ, $ WORK( INDWRK ), IINFO ) * * For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR. * IF( .NOT.WANTZ ) THEN CALL SSTERF( N, W, WORK( INDE ), INFO ) ELSE CALL SSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, $ WORK( INDWRK ), $ INFO ) END IF RETURN * * End of SSBGV * END