numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ssyev_2stage.f | 11616B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
*> \brief <b> SSYEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b> * * @generated from dsyev_2stage.f, fortran d -> s, Sat Nov 5 23:55:51 2016 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SSYEV_2STAGE + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyev_2stage.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyev_2stage.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyev_2stage.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, * INFO ) * * IMPLICIT NONE * * .. Scalar Arguments .. * CHARACTER JOBZ, UPLO * INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. * REAL A( LDA, * ), W( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SSYEV_2STAGE computes all eigenvalues and, optionally, eigenvectors of a *> real symmetric matrix A using the 2stage technique for *> the reduction to tridiagonal. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBZ *> \verbatim *> JOBZ is CHARACTER*1 *> = 'N': Compute eigenvalues only; *> = 'V': Compute eigenvalues and eigenvectors. *> Not available in this release. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA, N) *> On entry, the symmetric matrix A. If UPLO = 'U', the *> leading N-by-N upper triangular part of A contains the *> upper triangular part of the matrix A. If UPLO = 'L', *> the leading N-by-N lower triangular part of A contains *> the lower triangular part of the matrix A. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the *> orthonormal eigenvectors of the matrix A. *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') *> or the upper triangle (if UPLO='U') of A, including the *> diagonal, is destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] W *> \verbatim *> W is REAL array, dimension (N) *> If INFO = 0, the eigenvalues in ascending order. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension LWORK *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. LWORK >= 1, when N <= 1; *> otherwise *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + 2*N *> = N*KD + N*max(KD+1,FACTOPTNB) *> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + 2*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice *> NTHREADS is the number of threads used when *> openMP compilation is enabled, otherwise =1. *> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the algorithm failed to converge; i *> off-diagonal elements of an intermediate tridiagonal *> form did not converge to zero. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup heev_2stage * *> \par Further Details: * ===================== *> *> \verbatim *> *> All details about the 2stage techniques are available in: *> *> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. *> Parallel reduction to condensed forms for symmetric eigenvalue problems *> using aggregated fine-grained and memory-aware kernels. In Proceedings *> of 2011 International Conference for High Performance Computing, *> Networking, Storage and Analysis (SC '11), New York, NY, USA, *> Article 8 , 11 pages. *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. *> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. *> Article 90, 12 pages. *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. *> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. *> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * * ===================================================================== SUBROUTINE SSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, $ INFO ) * IMPLICIT NONE * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. REAL A( LDA, * ), W( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LOWER, LQUERY, WANTZ INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE, $ LLWORK, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, $ SMLNUM * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV2STAGE REAL SLAMCH, SLANSY, SROUNDUP_LWORK EXTERNAL LSAME, SLAMCH, SLANSY, ILAENV2STAGE, $ SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SLASCL, SORGTR, SSCAL, SSTEQR, $ SSTERF, $ XERBLA, SSYTRD_2STAGE * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) LOWER = LSAME( UPLO, 'L' ) LQUERY = ( LWORK.EQ.-1 ) * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF * IF( INFO.EQ.0 ) THEN KD = ILAENV2STAGE( 1, 'SSYTRD_2STAGE', JOBZ, N, -1, -1, $ -1 ) IB = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', JOBZ, N, KD, -1, $ -1 ) LHTRD = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, $ -1 ) LWTRD = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, $ -1 ) LWMIN = 2*N + LHTRD + LWTRD WORK( 1 ) = REAL( LWMIN ) * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) $ INFO = -8 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYEV_2STAGE ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN RETURN END IF * IF( N.EQ.1 ) THEN W( 1 ) = A( 1, 1 ) WORK( 1 ) = 2 IF( WANTZ ) $ A( 1, 1 ) = ONE RETURN END IF * * Get machine constants. * SAFMIN = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) SMLNUM = SAFMIN / EPS BIGNUM = ONE / SMLNUM RMIN = SQRT( SMLNUM ) RMAX = SQRT( BIGNUM ) * * Scale matrix to allowable range, if necessary. * ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK ) ISCALE = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN ISCALE = 1 SIGMA = RMIN / ANRM ELSE IF( ANRM.GT.RMAX ) THEN ISCALE = 1 SIGMA = RMAX / ANRM END IF IF( ISCALE.EQ.1 ) $ CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO ) * * Call SSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form. * INDE = 1 INDTAU = INDE + N INDHOUS = INDTAU + N INDWRK = INDHOUS + LHTRD LLWORK = LWORK - INDWRK + 1 * CALL SSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK( INDE ), $ WORK( INDTAU ), WORK( INDHOUS ), LHTRD, $ WORK( INDWRK ), LLWORK, IINFO ) * * For eigenvalues only, call SSTERF. For eigenvectors, first call * SORGTR to generate the orthogonal matrix, then call SSTEQR. * IF( .NOT.WANTZ ) THEN CALL SSTERF( N, W, WORK( INDE ), INFO ) ELSE * Not available in this release, and argument checking should not * let it getting here RETURN CALL SORGTR( UPLO, N, A, LDA, WORK( INDTAU ), $ WORK( INDWRK ), $ LLWORK, IINFO ) CALL SSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, $ WORK( INDTAU ), $ INFO ) END IF * * If matrix was scaled, then rescale eigenvalues appropriately. * IF( ISCALE.EQ.1 ) THEN IF( INFO.EQ.0 ) THEN IMAX = N ELSE IMAX = INFO - 1 END IF CALL SSCAL( IMAX, ONE / SIGMA, W, 1 ) END IF * * Set WORK(1) to optimal workspace size. * WORK( 1 ) = SROUNDUP_LWORK(LWMIN) * RETURN * * End of SSYEV_2STAGE * END