numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ssytrd_2stage.f | 11390B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
*> \brief \b SSYTRD_2STAGE * * @generated from zhetrd_2stage.f, fortran z -> s, Sun Nov 6 19:34:06 2016 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SSYTRD_2STAGE + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrd_2stage.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrd_2stage.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrd_2stage.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * HOUS2, LHOUS2, WORK, LWORK, INFO ) * * IMPLICIT NONE * * .. Scalar Arguments .. * CHARACTER VECT, UPLO * INTEGER N, LDA, LWORK, LHOUS2, INFO * .. * .. Array Arguments .. * REAL D( * ), E( * ) * REAL A( LDA, * ), TAU( * ), * HOUS2( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SSYTRD_2STAGE reduces a real symmetric matrix A to real symmetric *> tridiagonal form T by a orthogonal similarity transformation: *> Q1**T Q2**T* A * Q2 * Q1 = T. *> \endverbatim * * Arguments: * ========== * *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 *> = 'N': No need for the Housholder representation, *> in particular for the second stage (Band to *> tridiagonal) and thus LHOUS2 is of size max(1, 4*N); *> = 'V': the Householder representation is needed to *> either generate Q1 Q2 or to apply Q1 Q2, *> then LHOUS2 is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is REAL array, dimension (LDA,N) *> On entry, the symmetric matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading N-by-N lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> On exit, if UPLO = 'U', the band superdiagonal *> of A are overwritten by the corresponding elements of the *> internal band-diagonal matrix AB, and the elements above *> the KD superdiagonal, with the array TAU, represent the orthogonal *> matrix Q1 as a product of elementary reflectors; if UPLO *> = 'L', the diagonal and band subdiagonal of A are over- *> written by the corresponding elements of the internal band-diagonal *> matrix AB, and the elements below the KD subdiagonal, with *> the array TAU, represent the orthogonal matrix Q1 as a product *> of elementary reflectors. See Further Details. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension (N) *> The diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[out] E *> \verbatim *> E is REAL array, dimension (N-1) *> The off-diagonal elements of the tridiagonal matrix T. *> \endverbatim *> *> \param[out] TAU *> \verbatim *> TAU is REAL array, dimension (N-KD) *> The scalar factors of the elementary reflectors of *> the first stage (see Further Details). *> \endverbatim *> *> \param[out] HOUS2 *> \verbatim *> HOUS2 is REAL array, dimension (MAX(1,LHOUS2)) *> Stores the Householder representation of the stage2 *> band to tridiagonal. *> \endverbatim *> *> \param[in] LHOUS2 *> \verbatim *> LHOUS2 is INTEGER *> The dimension of the array HOUS2. *> LHOUS2 >= 1. *> *> If LWORK = -1, or LHOUS2 = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS2 array, returns *> this value as the first entry of the HOUS2 array, and no error *> message related to LHOUS2 is issued by XERBLA. *> If VECT='N', LHOUS2 = max(1, 4*n); *> if VECT='V', option not yet available. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension). *> *> If LWORK = -1, or LHOUS2 = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N *> = N*KD + N*max(KD+1,FACTOPTNB) *> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice *> NTHREADS is the number of threads used when *> openMP compilation is enabled, otherwise =1. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hetrd_2stage * *> \par Further Details: * ===================== *> *> \verbatim *> *> Implemented by Azzam Haidar. *> *> All details are available on technical report, SC11, SC13 papers. *> *> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. *> Parallel reduction to condensed forms for symmetric eigenvalue problems *> using aggregated fine-grained and memory-aware kernels. In Proceedings *> of 2011 International Conference for High Performance Computing, *> Networking, Storage and Analysis (SC '11), New York, NY, USA, *> Article 8 , 11 pages. *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. *> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. *> Article 90, 12 pages. *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. *> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. *> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, $ HOUS2, LHOUS2, WORK, LWORK, INFO ) * IMPLICIT NONE * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER VECT, UPLO INTEGER N, LDA, LWORK, LHOUS2, INFO * .. * .. Array Arguments .. REAL D( * ), E( * ) REAL A( LDA, * ), TAU( * ), $ HOUS2( * ), WORK( * ) * .. * * ===================================================================== * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER, WANTQ INTEGER KD, IB, LWMIN, LHMIN, LWRK, LDAB, WPOS, ABPOS * .. * .. External Subroutines .. EXTERNAL XERBLA, SSYTRD_SY2SB, SSYTRD_SB2ST * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV2STAGE EXTERNAL LSAME, ILAENV2STAGE * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 WANTQ = LSAME( VECT, 'V' ) UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) .OR. ( LHOUS2.EQ.-1 ) * * Determine the block size, the workspace size and the hous size. * KD = ILAENV2STAGE( 1, 'SSYTRD_2STAGE', VECT, N, -1, -1, $ -1 ) IB = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', VECT, N, KD, -1, $ -1 ) IF( N.EQ.0 ) THEN LHMIN = 1 LWMIN = 1 ELSE LHMIN = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', VECT, N, KD, IB, $ -1 ) LWMIN = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', VECT, N, KD, IB, $ -1 ) END IF * IF( .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LHOUS2.LT.LHMIN .AND. .NOT.LQUERY ) THEN INFO = -10 ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -12 END IF * IF( INFO.EQ.0 ) THEN HOUS2( 1 ) = REAL( LHMIN ) WORK( 1 ) = REAL( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRD_2STAGE', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * * Determine pointer position * LDAB = KD+1 LWRK = LWORK-LDAB*N ABPOS = 1 WPOS = ABPOS + LDAB*N CALL SSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, $ TAU, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRD_SY2SB', -INFO ) RETURN END IF CALL SSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, $ WORK( ABPOS ), LDAB, D, E, $ HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRD_SB2ST', -INFO ) RETURN END IF * * WORK( 1 ) = REAL( LWMIN ) RETURN * * End of SSYTRD_2STAGE * END