numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/stgsy2.f 37478B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
*> \brief \b STGSY2 solves the generalized Sylvester equation (unblocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download STGSY2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsy2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsy2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsy2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
*                          LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
*                          IWORK, PQ, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
*      $                   PQ
*       REAL               RDSCAL, RDSUM, SCALE
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ),
*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STGSY2 solves the generalized Sylvester equation:
*>
*>             A * R - L * B = scale * C                (1)
*>             D * R - L * E = scale * F,
*>
*> using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
*> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
*> N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
*> must be in generalized Schur canonical form, i.e. A, B are upper
*> quasi triangular and D, E are upper triangular. The solution (R, L)
*> overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
*> chosen to avoid overflow.
*>
*> In matrix notation solving equation (1) corresponds to solve
*> Z*x = scale*b, where Z is defined as
*>
*>        Z = [ kron(In, A)  -kron(B**T, Im) ]             (2)
*>            [ kron(In, D)  -kron(E**T, Im) ],
*>
*> Ik is the identity matrix of size k and X**T is the transpose of X.
*> kron(X, Y) is the Kronecker product between the matrices X and Y.
*> In the process of solving (1), we solve a number of such systems
*> where Dim(In), Dim(In) = 1 or 2.
*>
*> If TRANS = 'T', solve the transposed system Z**T*y = scale*b for y,
*> which is equivalent to solve for R and L in
*>
*>             A**T * R  + D**T * L   = scale * C           (3)
*>             R  * B**T + L  * E**T  = scale * -F
*>
*> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
*> sigma_min(Z) using reverse communication with SLACON.
*>
*> STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL
*> of an upper bound on the separation between to matrix pairs. Then
*> the input (A, D), (B, E) are sub-pencils of the matrix pair in
*> STGSYL. See STGSYL for details.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          = 'N': solve the generalized Sylvester equation (1).
*>          = 'T': solve the 'transposed' system (3).
*> \endverbatim
*>
*> \param[in] IJOB
*> \verbatim
*>          IJOB is INTEGER
*>          Specifies what kind of functionality to be performed.
*>          = 0: solve (1) only.
*>          = 1: A contribution from this subsystem to a Frobenius
*>               norm-based estimate of the separation between two matrix
*>               pairs is computed. (look ahead strategy is used).
*>          = 2: A contribution from this subsystem to a Frobenius
*>               norm-based estimate of the separation between two matrix
*>               pairs is computed. (SGECON on sub-systems is used.)
*>          Not referenced if TRANS = 'T'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          On entry, M specifies the order of A and D, and the row
*>          dimension of C, F, R and L.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          On entry, N specifies the order of B and E, and the column
*>          dimension of C, F, R and L.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is REAL array, dimension (LDA, M)
*>          On entry, A contains an upper quasi triangular matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the matrix A. LDA >= max(1, M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (LDB, N)
*>          On entry, B contains an upper quasi triangular matrix.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the matrix B. LDB >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is REAL array, dimension (LDC, N)
*>          On entry, C contains the right-hand-side of the first matrix
*>          equation in (1).
*>          On exit, if IJOB = 0, C has been overwritten by the
*>          solution R.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the matrix C. LDC >= max(1, M).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (LDD, M)
*>          On entry, D contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDD
*> \verbatim
*>          LDD is INTEGER
*>          The leading dimension of the matrix D. LDD >= max(1, M).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is REAL array, dimension (LDE, N)
*>          On entry, E contains an upper triangular matrix.
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*>          LDE is INTEGER
*>          The leading dimension of the matrix E. LDE >= max(1, N).
*> \endverbatim
*>
*> \param[in,out] F
*> \verbatim
*>          F is REAL array, dimension (LDF, N)
*>          On entry, F contains the right-hand-side of the second matrix
*>          equation in (1).
*>          On exit, if IJOB = 0, F has been overwritten by the
*>          solution L.
*> \endverbatim
*>
*> \param[in] LDF
*> \verbatim
*>          LDF is INTEGER
*>          The leading dimension of the matrix F. LDF >= max(1, M).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*>          SCALE is REAL
*>          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
*>          R and L (C and F on entry) will hold the solutions to a
*>          slightly perturbed system but the input matrices A, B, D and
*>          E have not been changed. If SCALE = 0, R and L will hold the
*>          solutions to the homogeneous system with C = F = 0. Normally,
*>          SCALE = 1.
*> \endverbatim
*>
*> \param[in,out] RDSUM
*> \verbatim
*>          RDSUM is REAL
*>          On entry, the sum of squares of computed contributions to
*>          the Dif-estimate under computation by STGSYL, where the
*>          scaling factor RDSCAL (see below) has been factored out.
*>          On exit, the corresponding sum of squares updated with the
*>          contributions from the current sub-system.
*>          If TRANS = 'T' RDSUM is not touched.
*>          NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
*> \endverbatim
*>
*> \param[in,out] RDSCAL
*> \verbatim
*>          RDSCAL is REAL
*>          On entry, scaling factor used to prevent overflow in RDSUM.
*>          On exit, RDSCAL is updated w.r.t. the current contributions
*>          in RDSUM.
*>          If TRANS = 'T', RDSCAL is not touched.
*>          NOTE: RDSCAL only makes sense when STGSY2 is called by
*>                STGSYL.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (M+N+2)
*> \endverbatim
*>
*> \param[out] PQ
*> \verbatim
*>          PQ is INTEGER
*>          On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
*>          8-by-8) solved by this routine.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          On exit, if INFO is set to
*>            =0: Successful exit
*>            <0: If INFO = -i, the i-th argument had an illegal value.
*>            >0: The matrix pairs (A, D) and (B, E) have common or very
*>                close eigenvalues.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup tgsy2
*
*> \par Contributors:
*  ==================
*>
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*>     Umea University, S-901 87 Umea, Sweden.
*
*  =====================================================================
      SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC,
     $                   D,
     $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
     $                   IWORK, PQ, INFO )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
     $                   PQ
      REAL               RDSCAL, RDSUM, SCALE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
*     ..
*
*  =====================================================================
*  Replaced various illegal calls to SCOPY by calls to SLASET.
*  Sven Hammarling, 27/5/02.
*
*     .. Parameters ..
      INTEGER            LDZ
      PARAMETER          ( LDZ = 8 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOTRAN
      INTEGER            I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
     $                   K, MB, NB, P, Q, ZDIM
      REAL               ALPHA, SCALOC
*     ..
*     .. Local Arrays ..
      INTEGER            IPIV( LDZ ), JPIV( LDZ )
      REAL               RHS( LDZ ), Z( LDZ, LDZ )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, SGEMM, SGEMV, SGER,
     $                   SGESC2,
     $                   SGETC2, SSCAL, SLASET, SLATDF, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test input parameters
*
      INFO = 0
      IERR = 0
      NOTRAN = LSAME( TRANS, 'N' )
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -1
      ELSE IF( NOTRAN ) THEN
         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
            INFO = -2
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( M.LE.0 ) THEN
            INFO = -3
         ELSE IF( N.LE.0 ) THEN
            INFO = -4
         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
            INFO = -6
         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
            INFO = -8
         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
            INFO = -10
         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
            INFO = -12
         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
            INFO = -14
         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
            INFO = -16
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'STGSY2', -INFO )
         RETURN
      END IF
*
*     Determine block structure of A
*
      PQ = 0
      P = 0
      I = 1
   10 CONTINUE
      IF( I.GT.M )
     $   GO TO 20
      P = P + 1
      IWORK( P ) = I
      IF( I.EQ.M )
     $   GO TO 20
      IF( A( I+1, I ).NE.ZERO ) THEN
         I = I + 2
      ELSE
         I = I + 1
      END IF
      GO TO 10
   20 CONTINUE
      IWORK( P+1 ) = M + 1
*
*     Determine block structure of B
*
      Q = P + 1
      J = 1
   30 CONTINUE
      IF( J.GT.N )
     $   GO TO 40
      Q = Q + 1
      IWORK( Q ) = J
      IF( J.EQ.N )
     $   GO TO 40
      IF( B( J+1, J ).NE.ZERO ) THEN
         J = J + 2
      ELSE
         J = J + 1
      END IF
      GO TO 30
   40 CONTINUE
      IWORK( Q+1 ) = N + 1
      PQ = P*( Q-P-1 )
*
      IF( NOTRAN ) THEN
*
*        Solve (I, J) - subsystem
*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
*        for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
*
         SCALE = ONE
         SCALOC = ONE
         DO 120 J = P + 2, Q
            JS = IWORK( J )
            JSP1 = JS + 1
            JE = IWORK( J+1 ) - 1
            NB = JE - JS + 1
            DO 110 I = P, 1, -1
*
               IS = IWORK( I )
               ISP1 = IS + 1
               IE = IWORK( I+1 ) - 1
               MB = IE - IS + 1
               ZDIM = MB*NB*2
*
               IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 2-by-2 system Z * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = D( IS, IS )
                  Z( 1, 2 ) = -B( JS, JS )
                  Z( 2, 2 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = F( IS, JS )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 50 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   50                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  F( IS, JS ) = RHS( 2 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     ALPHA = -RHS( 1 )
                     CALL SAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1,
     $                           JS ),
     $                           1 )
                     CALL SAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1,
     $                           JS ),
     $                           1 )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build a 4-by-4 system Z * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = ZERO
                  Z( 3, 1 ) = D( IS, IS )
                  Z( 4, 1 ) = ZERO
*
                  Z( 1, 2 ) = ZERO
                  Z( 2, 2 ) = A( IS, IS )
                  Z( 3, 2 ) = ZERO
                  Z( 4, 2 ) = D( IS, IS )
*
                  Z( 1, 3 ) = -B( JS, JS )
                  Z( 2, 3 ) = -B( JS, JSP1 )
                  Z( 3, 3 ) = -E( JS, JS )
                  Z( 4, 3 ) = -E( JS, JSP1 )
*
                  Z( 1, 4 ) = -B( JSP1, JS )
                  Z( 2, 4 ) = -B( JSP1, JSP1 )
                  Z( 3, 4 ) = ZERO
                  Z( 4, 4 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( IS, JSP1 )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( IS, JSP1 )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 60 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   60                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( IS, JSP1 ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( IS, JSP1 ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGER( IS-1, NB, -ONE, A( 1, IS ), 1,
     $                          RHS( 1 ),
     $                          1, C( 1, JS ), LDC )
                     CALL SGER( IS-1, NB, -ONE, D( 1, IS ), 1,
     $                          RHS( 1 ),
     $                          1, F( 1, JS ), LDF )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE,
     $                           F( IS, JE+1 ), LDF )
                     CALL SAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ),
     $                           LDB,
     $                           C( IS, JE+1 ), LDC )
                     CALL SAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ),
     $                           LDE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 4-by-4 system Z * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = A( ISP1, IS )
                  Z( 3, 1 ) = D( IS, IS )
                  Z( 4, 1 ) = ZERO
*
                  Z( 1, 2 ) = A( IS, ISP1 )
                  Z( 2, 2 ) = A( ISP1, ISP1 )
                  Z( 3, 2 ) = D( IS, ISP1 )
                  Z( 4, 2 ) = D( ISP1, ISP1 )
*
                  Z( 1, 3 ) = -B( JS, JS )
                  Z( 2, 3 ) = ZERO
                  Z( 3, 3 ) = -E( JS, JS )
                  Z( 4, 3 ) = ZERO
*
                  Z( 1, 4 ) = ZERO
                  Z( 2, 4 ) = -B( JS, JS )
                  Z( 3, 4 ) = ZERO
                  Z( 4, 4 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( ISP1, JS )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( ISP1, JS )
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 70 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   70                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( ISP1, JS ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( ISP1, JS ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ),
     $                           LDA,
     $                           RHS( 1 ), 1, ONE, C( 1, JS ), 1 )
                     CALL SGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ),
     $                           LDD,
     $                           RHS( 1 ), 1, ONE, F( 1, JS ), 1 )
                  END IF
                  IF( J.LT.Q ) THEN
                     CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
     $                          B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC )
                     CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1,
     $                          E( JS, JE+1 ), LDE, F( IS, JE+1 ), LDF )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build an 8-by-8 system Z * x = RHS
*
                  CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = A( ISP1, IS )
                  Z( 5, 1 ) = D( IS, IS )
*
                  Z( 1, 2 ) = A( IS, ISP1 )
                  Z( 2, 2 ) = A( ISP1, ISP1 )
                  Z( 5, 2 ) = D( IS, ISP1 )
                  Z( 6, 2 ) = D( ISP1, ISP1 )
*
                  Z( 3, 3 ) = A( IS, IS )
                  Z( 4, 3 ) = A( ISP1, IS )
                  Z( 7, 3 ) = D( IS, IS )
*
                  Z( 3, 4 ) = A( IS, ISP1 )
                  Z( 4, 4 ) = A( ISP1, ISP1 )
                  Z( 7, 4 ) = D( IS, ISP1 )
                  Z( 8, 4 ) = D( ISP1, ISP1 )
*
                  Z( 1, 5 ) = -B( JS, JS )
                  Z( 3, 5 ) = -B( JS, JSP1 )
                  Z( 5, 5 ) = -E( JS, JS )
                  Z( 7, 5 ) = -E( JS, JSP1 )
*
                  Z( 2, 6 ) = -B( JS, JS )
                  Z( 4, 6 ) = -B( JS, JSP1 )
                  Z( 6, 6 ) = -E( JS, JS )
                  Z( 8, 6 ) = -E( JS, JSP1 )
*
                  Z( 1, 7 ) = -B( JSP1, JS )
                  Z( 3, 7 ) = -B( JSP1, JSP1 )
                  Z( 7, 7 ) = -E( JSP1, JSP1 )
*
                  Z( 2, 8 ) = -B( JSP1, JS )
                  Z( 4, 8 ) = -B( JSP1, JSP1 )
                  Z( 8, 8 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 80 JJ = 0, NB - 1
                     CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
                     CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ),
     $                           1 )
                     K = K + MB
                     II = II + MB
   80             CONTINUE
*
*                 Solve Z * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  IF( IJOB.EQ.0 ) THEN
                     CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                            SCALOC )
                     IF( SCALOC.NE.ONE ) THEN
                        DO 90 K = 1, N
                           CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                           CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
   90                   CONTINUE
                        SCALE = SCALE*SCALOC
                     END IF
                  ELSE
                     CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
     $                            RDSCAL, IPIV, JPIV )
                  END IF
*
*                 Unpack solution vector(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 100 JJ = 0, NB - 1
                     CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
                     CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ),
     $                           1 )
                     K = K + MB
                     II = II + MB
  100             CONTINUE
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( I.GT.1 ) THEN
                     CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
     $                           A( 1, IS ), LDA, RHS( 1 ), MB, ONE,
     $                           C( 1, JS ), LDC )
                     CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
     $                           D( 1, IS ), LDD, RHS( 1 ), MB, ONE,
     $                           F( 1, JS ), LDF )
                  END IF
                  IF( J.LT.Q ) THEN
                     K = MB*NB + 1
                     CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE,
     $                           RHS( K ),
     $                           MB, B( JS, JE+1 ), LDB, ONE,
     $                           C( IS, JE+1 ), LDC )
                     CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE,
     $                           RHS( K ),
     $                           MB, E( JS, JE+1 ), LDE, ONE,
     $                           F( IS, JE+1 ), LDF )
                  END IF
*
               END IF
*
  110       CONTINUE
  120    CONTINUE
      ELSE
*
*        Solve (I, J) - subsystem
*             A(I, I)**T * R(I, J) + D(I, I)**T * L(J, J)  =  C(I, J)
*             R(I, I)  * B(J, J) + L(I, J)  * E(J, J)  = -F(I, J)
*        for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1
*
         SCALE = ONE
         SCALOC = ONE
         DO 200 I = 1, P
*
            IS = IWORK( I )
            ISP1 = IS + 1
            IE = IWORK( I+1 ) - 1
            MB = IE - IS + 1
            DO 190 J = Q, P + 2, -1
*
               JS = IWORK( J )
               JSP1 = JS + 1
               JE = IWORK( J+1 ) - 1
               NB = JE - JS + 1
               ZDIM = MB*NB*2
               IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 2-by-2 system Z**T * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = -B( JS, JS )
                  Z( 1, 2 ) = D( IS, IS )
                  Z( 2, 2 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = F( IS, JS )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                         SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 130 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  130                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  F( IS, JS ) = RHS( 2 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     ALPHA = RHS( 1 )
                     CALL SAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS,
     $                           1 ),
     $                           LDF )
                     ALPHA = RHS( 2 )
                     CALL SAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS,
     $                           1 ),
     $                           LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     ALPHA = -RHS( 1 )
                     CALL SAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA,
     $                           C( IE+1, JS ), 1 )
                     ALPHA = -RHS( 2 )
                     CALL SAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD,
     $                           C( IE+1, JS ), 1 )
                  END IF
*
               ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build a 4-by-4 system Z**T * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = ZERO
                  Z( 3, 1 ) = -B( JS, JS )
                  Z( 4, 1 ) = -B( JSP1, JS )
*
                  Z( 1, 2 ) = ZERO
                  Z( 2, 2 ) = A( IS, IS )
                  Z( 3, 2 ) = -B( JS, JSP1 )
                  Z( 4, 2 ) = -B( JSP1, JSP1 )
*
                  Z( 1, 3 ) = D( IS, IS )
                  Z( 2, 3 ) = ZERO
                  Z( 3, 3 ) = -E( JS, JS )
                  Z( 4, 3 ) = ZERO
*
                  Z( 1, 4 ) = ZERO
                  Z( 2, 4 ) = D( IS, IS )
                  Z( 3, 4 ) = -E( JS, JSP1 )
                  Z( 4, 4 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( IS, JSP1 )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( IS, JSP1 )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                         SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 140 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  140                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( IS, JSP1 ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( IS, JSP1 ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1,
     $                           F( IS, 1 ), LDF )
                     CALL SAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1,
     $                           F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA,
     $                          RHS( 1 ), 1, C( IE+1, JS ), LDC )
                     CALL SGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD,
     $                          RHS( 3 ), 1, C( IE+1, JS ), LDC )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
*
*                 Build a 4-by-4 system Z**T * x = RHS
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = A( IS, ISP1 )
                  Z( 3, 1 ) = -B( JS, JS )
                  Z( 4, 1 ) = ZERO
*
                  Z( 1, 2 ) = A( ISP1, IS )
                  Z( 2, 2 ) = A( ISP1, ISP1 )
                  Z( 3, 2 ) = ZERO
                  Z( 4, 2 ) = -B( JS, JS )
*
                  Z( 1, 3 ) = D( IS, IS )
                  Z( 2, 3 ) = D( IS, ISP1 )
                  Z( 3, 3 ) = -E( JS, JS )
                  Z( 4, 3 ) = ZERO
*
                  Z( 1, 4 ) = ZERO
                  Z( 2, 4 ) = D( ISP1, ISP1 )
                  Z( 3, 4 ) = ZERO
                  Z( 4, 4 ) = -E( JS, JS )
*
*                 Set up right hand side(s)
*
                  RHS( 1 ) = C( IS, JS )
                  RHS( 2 ) = C( ISP1, JS )
                  RHS( 3 ) = F( IS, JS )
                  RHS( 4 ) = F( ISP1, JS )
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                         SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 150 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  150                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  C( IS, JS ) = RHS( 1 )
                  C( ISP1, JS ) = RHS( 2 )
                  F( IS, JS ) = RHS( 3 )
                  F( ISP1, JS ) = RHS( 4 )
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1,
     $                          JS ),
     $                          1, F( IS, 1 ), LDF )
                     CALL SGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1,
     $                          JS ),
     $                          1, F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ),
     $                           LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ),
     $                           1 )
                     CALL SGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ),
     $                           LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ),
     $                           1 )
                  END IF
*
               ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
*
*                 Build an 8-by-8 system Z**T * x = RHS
*
                  CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
*
                  Z( 1, 1 ) = A( IS, IS )
                  Z( 2, 1 ) = A( IS, ISP1 )
                  Z( 5, 1 ) = -B( JS, JS )
                  Z( 7, 1 ) = -B( JSP1, JS )
*
                  Z( 1, 2 ) = A( ISP1, IS )
                  Z( 2, 2 ) = A( ISP1, ISP1 )
                  Z( 6, 2 ) = -B( JS, JS )
                  Z( 8, 2 ) = -B( JSP1, JS )
*
                  Z( 3, 3 ) = A( IS, IS )
                  Z( 4, 3 ) = A( IS, ISP1 )
                  Z( 5, 3 ) = -B( JS, JSP1 )
                  Z( 7, 3 ) = -B( JSP1, JSP1 )
*
                  Z( 3, 4 ) = A( ISP1, IS )
                  Z( 4, 4 ) = A( ISP1, ISP1 )
                  Z( 6, 4 ) = -B( JS, JSP1 )
                  Z( 8, 4 ) = -B( JSP1, JSP1 )
*
                  Z( 1, 5 ) = D( IS, IS )
                  Z( 2, 5 ) = D( IS, ISP1 )
                  Z( 5, 5 ) = -E( JS, JS )
*
                  Z( 2, 6 ) = D( ISP1, ISP1 )
                  Z( 6, 6 ) = -E( JS, JS )
*
                  Z( 3, 7 ) = D( IS, IS )
                  Z( 4, 7 ) = D( IS, ISP1 )
                  Z( 5, 7 ) = -E( JS, JSP1 )
                  Z( 7, 7 ) = -E( JSP1, JSP1 )
*
                  Z( 4, 8 ) = D( ISP1, ISP1 )
                  Z( 6, 8 ) = -E( JS, JSP1 )
                  Z( 8, 8 ) = -E( JSP1, JSP1 )
*
*                 Set up right hand side(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 160 JJ = 0, NB - 1
                     CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
                     CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ),
     $                           1 )
                     K = K + MB
                     II = II + MB
  160             CONTINUE
*
*
*                 Solve Z**T * x = RHS
*
                  CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
                  IF( IERR.GT.0 )
     $               INFO = IERR
*
                  CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
     $                         SCALOC )
                  IF( SCALOC.NE.ONE ) THEN
                     DO 170 K = 1, N
                        CALL SSCAL( M, SCALOC, C( 1, K ), 1 )
                        CALL SSCAL( M, SCALOC, F( 1, K ), 1 )
  170                CONTINUE
                     SCALE = SCALE*SCALOC
                  END IF
*
*                 Unpack solution vector(s)
*
                  K = 1
                  II = MB*NB + 1
                  DO 180 JJ = 0, NB - 1
                     CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
                     CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ),
     $                           1 )
                     K = K + MB
                     II = II + MB
  180             CONTINUE
*
*                 Substitute R(I, J) and L(I, J) into remaining
*                 equation.
*
                  IF( J.GT.P+2 ) THEN
                     CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE,
     $                           C( IS, JS ), LDC, B( 1, JS ), LDB, ONE,
     $                           F( IS, 1 ), LDF )
                     CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE,
     $                           F( IS, JS ), LDF, E( 1, JS ), LDE, ONE,
     $                           F( IS, 1 ), LDF )
                  END IF
                  IF( I.LT.P ) THEN
                     CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
     $                           A( IS, IE+1 ), LDA, C( IS, JS ), LDC,
     $                           ONE, C( IE+1, JS ), LDC )
                     CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
     $                           D( IS, IE+1 ), LDD, F( IS, JS ), LDF,
     $                           ONE, C( IE+1, JS ), LDC )
                  END IF
*
               END IF
*
  190       CONTINUE
  200    CONTINUE
*
      END IF
      RETURN
*
*     End of STGSY2
*
      END