numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/stgsyl.f | 22799B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
*> \brief \b STGSYL * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download STGSYL + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsyl.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsyl.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsyl.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE STGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, * LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, * IWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, * $ LWORK, M, N * REAL DIF, SCALE * .. * .. Array Arguments .. * INTEGER IWORK( * ) * REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), * $ D( LDD, * ), E( LDE, * ), F( LDF, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> STGSYL solves the generalized Sylvester equation: *> *> A * R - L * B = scale * C (1) *> D * R - L * E = scale * F *> *> where R and L are unknown m-by-n matrices, (A, D), (B, E) and *> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, *> respectively, with real entries. (A, D) and (B, E) must be in *> generalized (real) Schur canonical form, i.e. A, B are upper quasi *> triangular and D, E are upper triangular. *> *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output *> scaling factor chosen to avoid overflow. *> *> In matrix notation (1) is equivalent to solve Zx = scale b, where *> Z is defined as *> *> Z = [ kron(In, A) -kron(B**T, Im) ] (2) *> [ kron(In, D) -kron(E**T, Im) ]. *> *> Here Ik is the identity matrix of size k and X**T is the transpose of *> X. kron(X, Y) is the Kronecker product between the matrices X and Y. *> *> If TRANS = 'T', STGSYL solves the transposed system Z**T*y = scale*b, *> which is equivalent to solve for R and L in *> *> A**T * R + D**T * L = scale * C (3) *> R * B**T + L * E**T = scale * -F *> *> This case (TRANS = 'T') is used to compute an one-norm-based estimate *> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) *> and (B,E), using SLACON. *> *> If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate *> of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the *> reciprocal of the smallest singular value of Z. See [1-2] for more *> information. *> *> This is a level 3 BLAS algorithm. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': solve the generalized Sylvester equation (1). *> = 'T': solve the 'transposed' system (3). *> \endverbatim *> *> \param[in] IJOB *> \verbatim *> IJOB is INTEGER *> Specifies what kind of functionality to be performed. *> = 0: solve (1) only. *> = 1: The functionality of 0 and 3. *> = 2: The functionality of 0 and 4. *> = 3: Only an estimate of Dif[(A,D), (B,E)] is computed. *> (look ahead strategy IJOB = 1 is used). *> = 4: Only an estimate of Dif[(A,D), (B,E)] is computed. *> ( SGECON on sub-systems is used ). *> Not referenced if TRANS = 'T'. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The order of the matrices A and D, and the row dimension of *> the matrices C, F, R and L. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices B and E, and the column dimension *> of the matrices C, F, R and L. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is REAL array, dimension (LDA, M) *> The upper quasi triangular matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1, M). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL array, dimension (LDB, N) *> The upper quasi triangular matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1, N). *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is REAL array, dimension (LDC, N) *> On entry, C contains the right-hand-side of the first matrix *> equation in (1) or (3). *> On exit, if IJOB = 0, 1 or 2, C has been overwritten by *> the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, *> the solution achieved during the computation of the *> Dif-estimate. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1, M). *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL array, dimension (LDD, M) *> The upper triangular matrix D. *> \endverbatim *> *> \param[in] LDD *> \verbatim *> LDD is INTEGER *> The leading dimension of the array D. LDD >= max(1, M). *> \endverbatim *> *> \param[in] E *> \verbatim *> E is REAL array, dimension (LDE, N) *> The upper triangular matrix E. *> \endverbatim *> *> \param[in] LDE *> \verbatim *> LDE is INTEGER *> The leading dimension of the array E. LDE >= max(1, N). *> \endverbatim *> *> \param[in,out] F *> \verbatim *> F is REAL array, dimension (LDF, N) *> On entry, F contains the right-hand-side of the second matrix *> equation in (1) or (3). *> On exit, if IJOB = 0, 1 or 2, F has been overwritten by *> the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, *> the solution achieved during the computation of the *> Dif-estimate. *> \endverbatim *> *> \param[in] LDF *> \verbatim *> LDF is INTEGER *> The leading dimension of the array F. LDF >= max(1, M). *> \endverbatim *> *> \param[out] DIF *> \verbatim *> DIF is REAL *> On exit DIF is the reciprocal of a lower bound of the *> reciprocal of the Dif-function, i.e. DIF is an upper bound of *> Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). *> IF IJOB = 0 or TRANS = 'T', DIF is not touched. *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is REAL *> On exit SCALE is the scaling factor in (1) or (3). *> If 0 < SCALE < 1, C and F hold the solutions R and L, resp., *> to a slightly perturbed system but the input matrices A, B, D *> and E have not been changed. If SCALE = 0, C and F hold the *> solutions R and L, respectively, to the homogeneous system *> with C = F = 0. Normally, SCALE = 1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK > = 1. *> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (M+N+6) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> =0: successful exit *> <0: If INFO = -i, the i-th argument had an illegal value. *> >0: (A, D) and (B, E) have common or close eigenvalues. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tgsyl * *> \par Contributors: * ================== *> *> Bo Kagstrom and Peter Poromaa, Department of Computing Science, *> Umea University, S-901 87 Umea, Sweden. * *> \par References: * ================ *> *> \verbatim *> *> [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *> for Solving the Generalized Sylvester Equation and Estimating the *> Separation between Regular Matrix Pairs, Report UMINF - 93.23, *> Department of Computing Science, Umea University, S-901 87 Umea, *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, *> No 1, 1996. *> *> [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester *> Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. *> Appl., 15(4):1045-1060, 1994 *> *> [3] B. Kagstrom and L. Westin, Generalized Schur Methods with *> Condition Estimators for Solving the Generalized Sylvester *> Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, *> July 1989, pp 745-751. *> \endverbatim *> * ===================================================================== SUBROUTINE STGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, $ D, $ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, $ IWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, $ LWORK, M, N REAL DIF, SCALE * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), $ D( LDD, * ), E( LDE, * ), F( LDF, * ), $ WORK( * ) * .. * * ===================================================================== * Replaced various illegal calls to SCOPY by calls to SLASET. * Sven Hammarling, 1/5/02. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, NOTRAN INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K, $ LINFO, LWMIN, MB, NB, P, PPQQ, PQ, Q REAL DSCALE, DSUM, SCALE2, SCALOC * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL SROUNDUP_LWORK EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SGEMM, SLACPY, SLASET, SSCAL, STGSY2, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, REAL, SQRT * .. * .. Executable Statements .. * * Decode and test input parameters * INFO = 0 NOTRAN = LSAME( TRANS, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -1 ELSE IF( NOTRAN ) THEN IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN INFO = -2 END IF END IF IF( INFO.EQ.0 ) THEN IF( M.LE.0 ) THEN INFO = -3 ELSE IF( N.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDD.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDE.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDF.LT.MAX( 1, M ) ) THEN INFO = -16 END IF END IF * IF( INFO.EQ.0 ) THEN IF( NOTRAN ) THEN IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN LWMIN = MAX( 1, 2*M*N ) ELSE LWMIN = 1 END IF ELSE LWMIN = 1 END IF WORK( 1 ) = SROUNDUP_LWORK(LWMIN) * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -20 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'STGSYL', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) THEN SCALE = 1 IF( NOTRAN ) THEN IF( IJOB.NE.0 ) THEN DIF = 0 END IF END IF RETURN END IF * * Determine optimal block sizes MB and NB * MB = ILAENV( 2, 'STGSYL', TRANS, M, N, -1, -1 ) NB = ILAENV( 5, 'STGSYL', TRANS, M, N, -1, -1 ) * ISOLVE = 1 IFUNC = 0 IF( NOTRAN ) THEN IF( IJOB.GE.3 ) THEN IFUNC = IJOB - 2 CALL SLASET( 'F', M, N, ZERO, ZERO, C, LDC ) CALL SLASET( 'F', M, N, ZERO, ZERO, F, LDF ) ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN ISOLVE = 2 END IF END IF * IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) ) $ THEN * DO 30 IROUND = 1, ISOLVE * * Use unblocked Level 2 solver * DSCALE = ZERO DSUM = ONE PQ = 0 CALL STGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, $ D, $ LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE, $ IWORK, PQ, INFO ) IF( DSCALE.NE.ZERO ) THEN IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) ) ELSE DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) ) END IF END IF * IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN IF( NOTRAN ) THEN IFUNC = IJOB END IF SCALE2 = SCALE CALL SLACPY( 'F', M, N, C, LDC, WORK, M ) CALL SLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M ) CALL SLASET( 'F', M, N, ZERO, ZERO, C, LDC ) CALL SLASET( 'F', M, N, ZERO, ZERO, F, LDF ) ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN CALL SLACPY( 'F', M, N, WORK, M, C, LDC ) CALL SLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF ) SCALE = SCALE2 END IF 30 CONTINUE * RETURN END IF * * Determine block structure of A * P = 0 I = 1 40 CONTINUE IF( I.GT.M ) $ GO TO 50 P = P + 1 IWORK( P ) = I I = I + MB IF( I.GE.M ) $ GO TO 50 IF( A( I, I-1 ).NE.ZERO ) $ I = I + 1 GO TO 40 50 CONTINUE * IWORK( P+1 ) = M + 1 IF( IWORK( P ).EQ.IWORK( P+1 ) ) $ P = P - 1 * * Determine block structure of B * Q = P + 1 J = 1 60 CONTINUE IF( J.GT.N ) $ GO TO 70 Q = Q + 1 IWORK( Q ) = J J = J + NB IF( J.GE.N ) $ GO TO 70 IF( B( J, J-1 ).NE.ZERO ) $ J = J + 1 GO TO 60 70 CONTINUE * IWORK( Q+1 ) = N + 1 IF( IWORK( Q ).EQ.IWORK( Q+1 ) ) $ Q = Q - 1 * IF( NOTRAN ) THEN * DO 150 IROUND = 1, ISOLVE * * Solve (I, J)-subsystem * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) * for I = P, P - 1,..., 1; J = 1, 2,..., Q * DSCALE = ZERO DSUM = ONE PQ = 0 SCALE = ONE DO 130 J = P + 2, Q JS = IWORK( J ) JE = IWORK( J+1 ) - 1 NB = JE - JS + 1 DO 120 I = P, 1, -1 IS = IWORK( I ) IE = IWORK( I+1 ) - 1 MB = IE - IS + 1 PPQQ = 0 CALL STGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), $ LDA, $ B( JS, JS ), LDB, C( IS, JS ), LDC, $ D( IS, IS ), LDD, E( JS, JS ), LDE, $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE, $ IWORK( Q+2 ), PPQQ, LINFO ) IF( LINFO.GT.0 ) $ INFO = LINFO * PQ = PQ + PPQQ IF( SCALOC.NE.ONE ) THEN DO 80 K = 1, JS - 1 CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 80 CONTINUE DO 90 K = JS, JE CALL SSCAL( IS-1, SCALOC, C( 1, K ), 1 ) CALL SSCAL( IS-1, SCALOC, F( 1, K ), 1 ) 90 CONTINUE DO 100 K = JS, JE CALL SSCAL( M-IE, SCALOC, C( IE+1, K ), 1 ) CALL SSCAL( M-IE, SCALOC, F( IE+1, K ), 1 ) 100 CONTINUE DO 110 K = JE + 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 110 CONTINUE SCALE = SCALE*SCALOC END IF * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( I.GT.1 ) THEN CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE, $ A( 1, IS ), LDA, C( IS, JS ), LDC, ONE, $ C( 1, JS ), LDC ) CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE, $ D( 1, IS ), LDD, C( IS, JS ), LDC, ONE, $ F( 1, JS ), LDF ) END IF IF( J.LT.Q ) THEN CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, $ F( IS, JS ), LDF, B( JS, JE+1 ), LDB, $ ONE, C( IS, JE+1 ), LDC ) CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, $ F( IS, JS ), LDF, E( JS, JE+1 ), LDE, $ ONE, F( IS, JE+1 ), LDF ) END IF 120 CONTINUE 130 CONTINUE IF( DSCALE.NE.ZERO ) THEN IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) ) ELSE DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) ) END IF END IF IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN IF( NOTRAN ) THEN IFUNC = IJOB END IF SCALE2 = SCALE CALL SLACPY( 'F', M, N, C, LDC, WORK, M ) CALL SLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M ) CALL SLASET( 'F', M, N, ZERO, ZERO, C, LDC ) CALL SLASET( 'F', M, N, ZERO, ZERO, F, LDF ) ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN CALL SLACPY( 'F', M, N, WORK, M, C, LDC ) CALL SLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF ) SCALE = SCALE2 END IF 150 CONTINUE * ELSE * * Solve transposed (I, J)-subsystem * A(I, I)**T * R(I, J) + D(I, I)**T * L(I, J) = C(I, J) * R(I, J) * B(J, J)**T + L(I, J) * E(J, J)**T = -F(I, J) * for I = 1,2,..., P; J = Q, Q-1,..., 1 * SCALE = ONE DO 210 I = 1, P IS = IWORK( I ) IE = IWORK( I+1 ) - 1 MB = IE - IS + 1 DO 200 J = Q, P + 2, -1 JS = IWORK( J ) JE = IWORK( J+1 ) - 1 NB = JE - JS + 1 CALL STGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA, $ B( JS, JS ), LDB, C( IS, JS ), LDC, $ D( IS, IS ), LDD, E( JS, JS ), LDE, $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE, $ IWORK( Q+2 ), PPQQ, LINFO ) IF( LINFO.GT.0 ) $ INFO = LINFO IF( SCALOC.NE.ONE ) THEN DO 160 K = 1, JS - 1 CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 160 CONTINUE DO 170 K = JS, JE CALL SSCAL( IS-1, SCALOC, C( 1, K ), 1 ) CALL SSCAL( IS-1, SCALOC, F( 1, K ), 1 ) 170 CONTINUE DO 180 K = JS, JE CALL SSCAL( M-IE, SCALOC, C( IE+1, K ), 1 ) CALL SSCAL( M-IE, SCALOC, F( IE+1, K ), 1 ) 180 CONTINUE DO 190 K = JE + 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 190 CONTINUE SCALE = SCALE*SCALOC END IF * * Substitute R(I, J) and L(I, J) into remaining equation. * IF( J.GT.P+2 ) THEN CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE, C( IS, $ JS ), $ LDC, B( 1, JS ), LDB, ONE, F( IS, 1 ), $ LDF ) CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE, F( IS, $ JS ), $ LDF, E( 1, JS ), LDE, ONE, F( IS, 1 ), $ LDF ) END IF IF( I.LT.P ) THEN CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE, $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC, ONE, $ C( IE+1, JS ), LDC ) CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE, $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF, ONE, $ C( IE+1, JS ), LDC ) END IF 200 CONTINUE 210 CONTINUE * END IF * WORK( 1 ) = SROUNDUP_LWORK(LWMIN) * RETURN * * End of STGSYL * END