numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zbdsqr.f | 26783B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
*> \brief \b ZBDSQR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZBDSQR + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, * LDU, C, LDC, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU * .. * .. Array Arguments .. * DOUBLE PRECISION D( * ), E( * ), RWORK( * ) * COMPLEX*16 C( LDC, * ), U( LDU, * ), VT( LDVT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZBDSQR computes the singular values and, optionally, the right and/or *> left singular vectors from the singular value decomposition (SVD) of *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit *> zero-shift QR algorithm. The SVD of B has the form *> *> B = Q * S * P**H *> *> where S is the diagonal matrix of singular values, Q is an orthogonal *> matrix of left singular vectors, and P is an orthogonal matrix of *> right singular vectors. If left singular vectors are requested, this *> subroutine actually returns U*Q instead of Q, and, if right singular *> vectors are requested, this subroutine returns P**H*VT instead of *> P**H, for given complex input matrices U and VT. When U and VT are *> the unitary matrices that reduce a general matrix A to bidiagonal *> form: A = U*B*VT, as computed by ZGEBRD, then *> *> A = (U*Q) * S * (P**H*VT) *> *> is the SVD of A. Optionally, the subroutine may also compute Q**H*C *> for a given complex input matrix C. *> *> See "Computing Small Singular Values of Bidiagonal Matrices With *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, *> no. 5, pp. 873-912, Sept 1990) and *> "Accurate singular values and differential qd algorithms," by *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics *> Department, University of California at Berkeley, July 1992 *> for a detailed description of the algorithm. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': B is upper bidiagonal; *> = 'L': B is lower bidiagonal. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix B. N >= 0. *> \endverbatim *> *> \param[in] NCVT *> \verbatim *> NCVT is INTEGER *> The number of columns of the matrix VT. NCVT >= 0. *> \endverbatim *> *> \param[in] NRU *> \verbatim *> NRU is INTEGER *> The number of rows of the matrix U. NRU >= 0. *> \endverbatim *> *> \param[in] NCC *> \verbatim *> NCC is INTEGER *> The number of columns of the matrix C. NCC >= 0. *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is DOUBLE PRECISION array, dimension (N) *> On entry, the n diagonal elements of the bidiagonal matrix B. *> On exit, if INFO=0, the singular values of B in decreasing *> order. *> \endverbatim *> *> \param[in,out] E *> \verbatim *> E is DOUBLE PRECISION array, dimension (N-1) *> On entry, the N-1 offdiagonal elements of the bidiagonal *> matrix B. *> On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E *> will contain the diagonal and superdiagonal elements of a *> bidiagonal matrix orthogonally equivalent to the one given *> as input. *> \endverbatim *> *> \param[in,out] VT *> \verbatim *> VT is COMPLEX*16 array, dimension (LDVT, NCVT) *> On entry, an N-by-NCVT matrix VT. *> On exit, VT is overwritten by P**H * VT. *> Not referenced if NCVT = 0. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. *> LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. *> \endverbatim *> *> \param[in,out] U *> \verbatim *> U is COMPLEX*16 array, dimension (LDU, N) *> On entry, an NRU-by-N matrix U. *> On exit, U is overwritten by U * Q. *> Not referenced if NRU = 0. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= max(1,NRU). *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX*16 array, dimension (LDC, NCC) *> On entry, an N-by-NCC matrix C. *> On exit, C is overwritten by Q**H * C. *> Not referenced if NCC = 0. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. *> LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (LRWORK) *> LRWORK = 4*N, if NCVT = NRU = NCC = 0, and *> LRWORK = 4*(N-1), otherwise *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: If INFO = -i, the i-th argument had an illegal value *> > 0: the algorithm did not converge; D and E contain the *> elements of a bidiagonal matrix which is orthogonally *> similar to the input matrix B; if INFO = i, i *> elements of E have not converged to zero. *> \endverbatim * *> \par Internal Parameters: * ========================= *> *> \verbatim *> TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8))) *> TOLMUL controls the convergence criterion of the QR loop. *> If it is positive, TOLMUL*EPS is the desired relative *> precision in the computed singular values. *> If it is negative, abs(TOLMUL*EPS*sigma_max) is the *> desired absolute accuracy in the computed singular *> values (corresponds to relative accuracy *> abs(TOLMUL*EPS) in the largest singular value. *> abs(TOLMUL) should be between 1 and 1/EPS, and preferably *> between 10 (for fast convergence) and .1/EPS *> (for there to be some accuracy in the results). *> Default is to lose at either one eighth or 2 of the *> available decimal digits in each computed singular value *> (whichever is smaller). *> *> MAXITR INTEGER, default = 6 *> MAXITR controls the maximum number of passes of the *> algorithm through its inner loop. The algorithms stops *> (and so fails to converge) if the number of passes *> through the inner loop exceeds MAXITR*N**2. *> *> \endverbatim * *> \par Note: * =========== *> *> \verbatim *> Bug report from Cezary Dendek. *> On November 3rd 2023, the INTEGER variable MAXIT = MAXITR*N**2 is *> removed since it can overflow pretty easily (for N larger or equal *> than 18,919). We instead use MAXITDIVN = MAXITR*N. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup bdsqr * * ===================================================================== SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, $ LDU, C, LDC, RWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), RWORK( * ) COMPLEX*16 C( LDC, * ), U( LDU, * ), VT( LDVT, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) DOUBLE PRECISION NEGONE PARAMETER ( NEGONE = -1.0D0 ) DOUBLE PRECISION HNDRTH PARAMETER ( HNDRTH = 0.01D0 ) DOUBLE PRECISION TEN PARAMETER ( TEN = 10.0D0 ) DOUBLE PRECISION HNDRD PARAMETER ( HNDRD = 100.0D0 ) DOUBLE PRECISION MEIGTH PARAMETER ( MEIGTH = -0.125D0 ) INTEGER MAXITR PARAMETER ( MAXITR = 6 ) * .. * .. Local Scalars .. LOGICAL LOWER, ROTATE INTEGER I, IDIR, ISUB, ITER, ITERDIVN, J, LL, LLL, M, $ MAXITDIVN, NM1, NM12, NM13, OLDLL, OLDM DOUBLE PRECISION ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU, $ OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL, $ SINR, SLL, SMAX, SMIN, SMINOA, $ SN, THRESH, TOL, TOLMUL, UNFL * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH EXTERNAL LSAME, DLAMCH * .. * .. External Subroutines .. EXTERNAL DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, $ ZDROT, $ ZDSCAL, ZLASR, ZSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 LOWER = LSAME( UPLO, 'L' ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NCVT.LT.0 ) THEN INFO = -3 ELSE IF( NRU.LT.0 ) THEN INFO = -4 ELSE IF( NCC.LT.0 ) THEN INFO = -5 ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN INFO = -9 ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN INFO = -11 ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN INFO = -13 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZBDSQR', -INFO ) RETURN END IF IF( N.EQ.0 ) $ RETURN IF( N.EQ.1 ) $ GO TO 160 * * ROTATE is true if any singular vectors desired, false otherwise * ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 ) * * If no singular vectors desired, use qd algorithm * IF( .NOT.ROTATE ) THEN CALL DLASQ1( N, D, E, RWORK, INFO ) * * If INFO equals 2, dqds didn't finish, try to finish * IF( INFO .NE. 2 ) RETURN INFO = 0 END IF * NM1 = N - 1 NM12 = NM1 + NM1 NM13 = NM12 + NM1 IDIR = 0 * * Get machine constants * EPS = DLAMCH( 'Epsilon' ) UNFL = DLAMCH( 'Safe minimum' ) * * If matrix lower bidiagonal, rotate to be upper bidiagonal * by applying Givens rotations on the left * IF( LOWER ) THEN DO 10 I = 1, N - 1 CALL DLARTG( D( I ), E( I ), CS, SN, R ) D( I ) = R E( I ) = SN*D( I+1 ) D( I+1 ) = CS*D( I+1 ) RWORK( I ) = CS RWORK( NM1+I ) = SN 10 CONTINUE * * Update singular vectors if desired * IF( NRU.GT.0 ) $ CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), $ RWORK( N ), $ U, LDU ) IF( NCC.GT.0 ) $ CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), $ RWORK( N ), $ C, LDC ) END IF * * Compute singular values to relative accuracy TOL * (By setting TOL to be negative, algorithm will compute * singular values to absolute accuracy ABS(TOL)*norm(input matrix)) * TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) ) TOL = TOLMUL*EPS * * Compute approximate maximum, minimum singular values * SMAX = ZERO DO 20 I = 1, N SMAX = MAX( SMAX, ABS( D( I ) ) ) 20 CONTINUE DO 30 I = 1, N - 1 SMAX = MAX( SMAX, ABS( E( I ) ) ) 30 CONTINUE SMIN = ZERO IF( TOL.GE.ZERO ) THEN * * Relative accuracy desired * SMINOA = ABS( D( 1 ) ) IF( SMINOA.EQ.ZERO ) $ GO TO 50 MU = SMINOA DO 40 I = 2, N MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) ) SMINOA = MIN( SMINOA, MU ) IF( SMINOA.EQ.ZERO ) $ GO TO 50 40 CONTINUE 50 CONTINUE SMINOA = SMINOA / SQRT( DBLE( N ) ) THRESH = MAX( TOL*SMINOA, MAXITR*(N*(N*UNFL)) ) ELSE * * Absolute accuracy desired * THRESH = MAX( ABS( TOL )*SMAX, MAXITR*(N*(N*UNFL)) ) END IF * * Prepare for main iteration loop for the singular values * (MAXIT is the maximum number of passes through the inner * loop permitted before nonconvergence signalled.) * MAXITDIVN = MAXITR*N ITERDIVN = 0 ITER = -1 OLDLL = -1 OLDM = -1 * * M points to last element of unconverged part of matrix * M = N * * Begin main iteration loop * 60 CONTINUE * * Check for convergence or exceeding iteration count * IF( M.LE.1 ) $ GO TO 160 IF( ITER.GE.N ) THEN ITER = ITER - N ITERDIVN = ITERDIVN + 1 IF( ITERDIVN.GE.MAXITDIVN ) $ GO TO 200 END IF * * Find diagonal block of matrix to work on * IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH ) $ D( M ) = ZERO SMAX = ABS( D( M ) ) DO 70 LLL = 1, M - 1 LL = M - LLL ABSS = ABS( D( LL ) ) ABSE = ABS( E( LL ) ) IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH ) $ D( LL ) = ZERO IF( ABSE.LE.THRESH ) $ GO TO 80 SMAX = MAX( SMAX, ABSS, ABSE ) 70 CONTINUE LL = 0 GO TO 90 80 CONTINUE E( LL ) = ZERO * * Matrix splits since E(LL) = 0 * IF( LL.EQ.M-1 ) THEN * * Convergence of bottom singular value, return to top of loop * M = M - 1 GO TO 60 END IF 90 CONTINUE LL = LL + 1 * * E(LL) through E(M-1) are nonzero, E(LL-1) is zero * IF( LL.EQ.M-1 ) THEN * * 2 by 2 block, handle separately * CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR, $ COSR, SINL, COSL ) D( M-1 ) = SIGMX E( M-1 ) = ZERO D( M ) = SIGMN * * Compute singular vectors, if desired * IF( NCVT.GT.0 ) $ CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, $ COSR, SINR ) IF( NRU.GT.0 ) $ CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, $ SINL ) IF( NCC.GT.0 ) $ CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL, $ SINL ) M = M - 2 GO TO 60 END IF * * If working on new submatrix, choose shift direction * (from larger end diagonal element towards smaller) * IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN * * Chase bulge from top (big end) to bottom (small end) * IDIR = 1 ELSE * * Chase bulge from bottom (big end) to top (small end) * IDIR = 2 END IF END IF * * Apply convergence tests * IF( IDIR.EQ.1 ) THEN * * Run convergence test in forward direction * First apply standard test to bottom of matrix * IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR. $ ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN E( M-1 ) = ZERO GO TO 60 END IF * IF( TOL.GE.ZERO ) THEN * * If relative accuracy desired, * apply convergence criterion forward * MU = ABS( D( LL ) ) SMIN = MU DO 100 LLL = LL, M - 1 IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN E( LLL ) = ZERO GO TO 60 END IF MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) ) SMIN = MIN( SMIN, MU ) 100 CONTINUE END IF * ELSE * * Run convergence test in backward direction * First apply standard test to top of matrix * IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR. $ ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN E( LL ) = ZERO GO TO 60 END IF * IF( TOL.GE.ZERO ) THEN * * If relative accuracy desired, * apply convergence criterion backward * MU = ABS( D( M ) ) SMIN = MU DO 110 LLL = M - 1, LL, -1 IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN E( LLL ) = ZERO GO TO 60 END IF MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) ) SMIN = MIN( SMIN, MU ) 110 CONTINUE END IF END IF OLDLL = LL OLDM = M * * Compute shift. First, test if shifting would ruin relative * accuracy, and if so set the shift to zero. * IF( TOL.GE.ZERO .AND. N*TOL*( SMIN / SMAX ).LE. $ MAX( EPS, HNDRTH*TOL ) ) THEN * * Use a zero shift to avoid loss of relative accuracy * SHIFT = ZERO ELSE * * Compute the shift from 2-by-2 block at end of matrix * IF( IDIR.EQ.1 ) THEN SLL = ABS( D( LL ) ) CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R ) ELSE SLL = ABS( D( M ) ) CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R ) END IF * * Test if shift negligible, and if so set to zero * IF( SLL.GT.ZERO ) THEN IF( ( SHIFT / SLL )**2.LT.EPS ) $ SHIFT = ZERO END IF END IF * * Increment iteration count * ITER = ITER + M - LL * * If SHIFT = 0, do simplified QR iteration * IF( SHIFT.EQ.ZERO ) THEN IF( IDIR.EQ.1 ) THEN * * Chase bulge from top to bottom * Save cosines and sines for later singular vector updates * CS = ONE OLDCS = ONE DO 120 I = LL, M - 1 CALL DLARTG( D( I )*CS, E( I ), CS, SN, R ) IF( I.GT.LL ) $ E( I-1 ) = OLDSN*R CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, $ D( I ) ) RWORK( I-LL+1 ) = CS RWORK( I-LL+1+NM1 ) = SN RWORK( I-LL+1+NM12 ) = OLDCS RWORK( I-LL+1+NM13 ) = OLDSN 120 CONTINUE H = D( M )*CS D( M ) = H*OLDCS E( M-1 ) = H*OLDSN * * Update singular vectors * IF( NCVT.GT.0 ) $ CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ), $ RWORK( N ), VT( LL, 1 ), LDVT ) IF( NRU.GT.0 ) $ CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), U( 1, LL ), LDU ) IF( NCC.GT.0 ) $ CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), C( LL, 1 ), LDC ) * * Test convergence * IF( ABS( E( M-1 ) ).LE.THRESH ) $ E( M-1 ) = ZERO * ELSE * * Chase bulge from bottom to top * Save cosines and sines for later singular vector updates * CS = ONE OLDCS = ONE DO 130 I = M, LL + 1, -1 CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R ) IF( I.LT.M ) $ E( I ) = OLDSN*R CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, $ D( I ) ) RWORK( I-LL ) = CS RWORK( I-LL+NM1 ) = -SN RWORK( I-LL+NM12 ) = OLDCS RWORK( I-LL+NM13 ) = -OLDSN 130 CONTINUE H = D( LL )*CS D( LL ) = H*OLDCS E( LL ) = H*OLDSN * * Update singular vectors * IF( NCVT.GT.0 ) $ CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), VT( LL, 1 ), LDVT ) IF( NRU.GT.0 ) $ CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ), $ RWORK( N ), U( 1, LL ), LDU ) IF( NCC.GT.0 ) $ CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ), $ RWORK( N ), C( LL, 1 ), LDC ) * * Test convergence * IF( ABS( E( LL ) ).LE.THRESH ) $ E( LL ) = ZERO END IF ELSE * * Use nonzero shift * IF( IDIR.EQ.1 ) THEN * * Chase bulge from top to bottom * Save cosines and sines for later singular vector updates * F = ( ABS( D( LL ) )-SHIFT )* $ ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) ) G = E( LL ) DO 140 I = LL, M - 1 CALL DLARTG( F, G, COSR, SINR, R ) IF( I.GT.LL ) $ E( I-1 ) = R F = COSR*D( I ) + SINR*E( I ) E( I ) = COSR*E( I ) - SINR*D( I ) G = SINR*D( I+1 ) D( I+1 ) = COSR*D( I+1 ) CALL DLARTG( F, G, COSL, SINL, R ) D( I ) = R F = COSL*E( I ) + SINL*D( I+1 ) D( I+1 ) = COSL*D( I+1 ) - SINL*E( I ) IF( I.LT.M-1 ) THEN G = SINL*E( I+1 ) E( I+1 ) = COSL*E( I+1 ) END IF RWORK( I-LL+1 ) = COSR RWORK( I-LL+1+NM1 ) = SINR RWORK( I-LL+1+NM12 ) = COSL RWORK( I-LL+1+NM13 ) = SINL 140 CONTINUE E( M-1 ) = F * * Update singular vectors * IF( NCVT.GT.0 ) $ CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ), $ RWORK( N ), VT( LL, 1 ), LDVT ) IF( NRU.GT.0 ) $ CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), U( 1, LL ), LDU ) IF( NCC.GT.0 ) $ CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), C( LL, 1 ), LDC ) * * Test convergence * IF( ABS( E( M-1 ) ).LE.THRESH ) $ E( M-1 ) = ZERO * ELSE * * Chase bulge from bottom to top * Save cosines and sines for later singular vector updates * F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT / $ D( M ) ) G = E( M-1 ) DO 150 I = M, LL + 1, -1 CALL DLARTG( F, G, COSR, SINR, R ) IF( I.LT.M ) $ E( I ) = R F = COSR*D( I ) + SINR*E( I-1 ) E( I-1 ) = COSR*E( I-1 ) - SINR*D( I ) G = SINR*D( I-1 ) D( I-1 ) = COSR*D( I-1 ) CALL DLARTG( F, G, COSL, SINL, R ) D( I ) = R F = COSL*E( I-1 ) + SINL*D( I-1 ) D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 ) IF( I.GT.LL+1 ) THEN G = SINL*E( I-2 ) E( I-2 ) = COSL*E( I-2 ) END IF RWORK( I-LL ) = COSR RWORK( I-LL+NM1 ) = -SINR RWORK( I-LL+NM12 ) = COSL RWORK( I-LL+NM13 ) = -SINL 150 CONTINUE E( LL ) = F * * Test convergence * IF( ABS( E( LL ) ).LE.THRESH ) $ E( LL ) = ZERO * * Update singular vectors if desired * IF( NCVT.GT.0 ) $ CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, $ RWORK( NM12+1 ), $ RWORK( NM13+1 ), VT( LL, 1 ), LDVT ) IF( NRU.GT.0 ) $ CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ), $ RWORK( N ), U( 1, LL ), LDU ) IF( NCC.GT.0 ) $ CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ), $ RWORK( N ), C( LL, 1 ), LDC ) END IF END IF * * QR iteration finished, go back and check convergence * GO TO 60 * * All singular values converged, so make them positive * 160 CONTINUE DO 170 I = 1, N IF( D( I ).EQ.ZERO ) THEN * * Avoid -ZERO * D( I ) = ZERO END IF IF( D( I ).LT.ZERO ) THEN D( I ) = -D( I ) * * Change sign of singular vectors, if desired * IF( NCVT.GT.0 ) $ CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT ) END IF 170 CONTINUE * * Sort the singular values into decreasing order (insertion sort on * singular values, but only one transposition per singular vector) * DO 190 I = 1, N - 1 * * Scan for smallest D(I) * ISUB = 1 SMIN = D( 1 ) DO 180 J = 2, N + 1 - I IF( D( J ).LE.SMIN ) THEN ISUB = J SMIN = D( J ) END IF 180 CONTINUE IF( ISUB.NE.N+1-I ) THEN * * Swap singular values and vectors * D( ISUB ) = D( N+1-I ) D( N+1-I ) = SMIN IF( NCVT.GT.0 ) $ CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ), $ LDVT ) IF( NRU.GT.0 ) $ CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 ) IF( NCC.GT.0 ) $ CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), $ LDC ) END IF 190 CONTINUE GO TO 220 * * Maximum number of iterations exceeded, failure to converge * 200 CONTINUE INFO = 0 DO 210 I = 1, N - 1 IF( E( I ).NE.ZERO ) $ INFO = INFO + 1 210 CONTINUE 220 CONTINUE RETURN * * End of ZBDSQR * END