numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgbrfsx.f | 29587B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
*> \brief \b ZGBRFSX * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGBRFSX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfsx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfsx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfsx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, * LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND, * BERR, N_ERR_BNDS, ERR_BNDS_NORM, * ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, * INFO ) * * .. Scalar Arguments .. * CHARACTER TRANS, EQUED * INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS, * $ NPARAMS, N_ERR_BNDS * DOUBLE PRECISION RCOND * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), * $ X( LDX , * ),WORK( * ) * DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ), * $ ERR_BNDS_NORM( NRHS, * ), * $ ERR_BNDS_COMP( NRHS, * ), RWORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGBRFSX improves the computed solution to a system of linear *> equations and provides error bounds and backward error estimates *> for the solution. In addition to normwise error bound, the code *> provides maximum componentwise error bound if possible. See *> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the *> error bounds. *> *> The original system of linear equations may have been equilibrated *> before calling this routine, as described by arguments EQUED, R *> and C below. In this case, the solution and error bounds returned *> are for the original unequilibrated system. *> \endverbatim * * Arguments: * ========== * *> \verbatim *> Some optional parameters are bundled in the PARAMS array. These *> settings determine how refinement is performed, but often the *> defaults are acceptable. If the defaults are acceptable, users *> can pass NPARAMS = 0 which prevents the source code from accessing *> the PARAMS argument. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the form of the system of equations: *> = 'N': A * X = B (No transpose) *> = 'T': A**T * X = B (Transpose) *> = 'C': A**H * X = B (Conjugate transpose) *> \endverbatim *> *> \param[in] EQUED *> \verbatim *> EQUED is CHARACTER*1 *> Specifies the form of equilibration that was done to A *> before calling this routine. This is needed to compute *> the solution and error bounds correctly. *> = 'N': No equilibration *> = 'R': Row equilibration, i.e., A has been premultiplied by *> diag(R). *> = 'C': Column equilibration, i.e., A has been postmultiplied *> by diag(C). *> = 'B': Both row and column equilibration, i.e., A has been *> replaced by diag(R) * A * diag(C). *> The right hand side B has been changed accordingly. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of subdiagonals within the band of A. KL >= 0. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of superdiagonals within the band of A. KU >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices B and X. NRHS >= 0. *> \endverbatim *> *> \param[in] AB *> \verbatim *> AB is COMPLEX*16 array, dimension (LDAB,N) *> The original band matrix A, stored in rows 1 to KL+KU+1. *> The j-th column of A is stored in the j-th column of the *> array AB as follows: *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). *> \endverbatim *> *> \param[in] LDAB *> \verbatim *> LDAB is INTEGER *> The leading dimension of the array AB. LDAB >= KL+KU+1. *> \endverbatim *> *> \param[in] AFB *> \verbatim *> AFB is COMPLEX*16 array, dimension (LDAFB,N) *> Details of the LU factorization of the band matrix A, as *> computed by ZGBTRF. U is stored as an upper triangular band *> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and *> the multipliers used during the factorization are stored in *> rows KL+KU+2 to 2*KL+KU+1. *> \endverbatim *> *> \param[in] LDAFB *> \verbatim *> LDAFB is INTEGER *> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> The pivot indices from ZGETRF; for 1<=i<=N, row i of the *> matrix was interchanged with row IPIV(i). *> \endverbatim *> *> \param[in,out] R *> \verbatim *> R is DOUBLE PRECISION array, dimension (N) *> The row scale factors for A. If EQUED = 'R' or 'B', A is *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R *> is not accessed. R is an input argument if FACT = 'F'; *> otherwise, R is an output argument. If FACT = 'F' and *> EQUED = 'R' or 'B', each element of R must be positive. *> If R is output, each element of R is a power of the radix. *> If R is input, each element of R should be a power of the radix *> to ensure a reliable solution and error estimates. Scaling by *> powers of the radix does not cause rounding errors unless the *> result underflows or overflows. Rounding errors during scaling *> lead to refining with a matrix that is not equivalent to the *> input matrix, producing error estimates that may not be *> reliable. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is DOUBLE PRECISION array, dimension (N) *> The column scale factors for A. If EQUED = 'C' or 'B', A is *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C *> is not accessed. C is an input argument if FACT = 'F'; *> otherwise, C is an output argument. If FACT = 'F' and *> EQUED = 'C' or 'B', each element of C must be positive. *> If C is output, each element of C is a power of the radix. *> If C is input, each element of C should be a power of the radix *> to ensure a reliable solution and error estimates. Scaling by *> powers of the radix does not cause rounding errors unless the *> result underflows or overflows. Rounding errors during scaling *> lead to refining with a matrix that is not equivalent to the *> input matrix, producing error estimates that may not be *> reliable. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> The right hand side matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX*16 array, dimension (LDX,NRHS) *> On entry, the solution matrix X, as computed by ZGETRS. *> On exit, the improved solution matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[out] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> Reciprocal scaled condition number. This is an estimate of the *> reciprocal Skeel condition number of the matrix A after *> equilibration (if done). If this is less than the machine *> precision (in particular, if it is zero), the matrix is singular *> to working precision. Note that the error may still be small even *> if this number is very small and the matrix appears ill- *> conditioned. *> \endverbatim *> *> \param[out] BERR *> \verbatim *> BERR is DOUBLE PRECISION array, dimension (NRHS) *> Componentwise relative backward error. This is the *> componentwise relative backward error of each solution vector X(j) *> (i.e., the smallest relative change in any element of A or B that *> makes X(j) an exact solution). *> \endverbatim *> *> \param[in] N_ERR_BNDS *> \verbatim *> N_ERR_BNDS is INTEGER *> Number of error bounds to return for each right hand side *> and each type (normwise or componentwise). See ERR_BNDS_NORM and *> ERR_BNDS_COMP below. *> \endverbatim *> *> \param[out] ERR_BNDS_NORM *> \verbatim *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *> For each right-hand side, this array contains information about *> various error bounds and condition numbers corresponding to the *> normwise relative error, which is defined as follows: *> *> Normwise relative error in the ith solution vector: *> max_j (abs(XTRUE(j,i) - X(j,i))) *> ------------------------------ *> max_j abs(X(j,i)) *> *> The array is indexed by the type of error information as described *> below. There currently are up to three pieces of information *> returned. *> *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith *> right-hand side. *> *> The second index in ERR_BNDS_NORM(:,err) contains the following *> three fields: *> err = 1 "Trust/don't trust" boolean. Trust the answer if the *> reciprocal condition number is less than the threshold *> sqrt(n) * dlamch('Epsilon'). *> *> err = 2 "Guaranteed" error bound: The estimated forward error, *> almost certainly within a factor of 10 of the true error *> so long as the next entry is greater than the threshold *> sqrt(n) * dlamch('Epsilon'). This error bound should only *> be trusted if the previous boolean is true. *> *> err = 3 Reciprocal condition number: Estimated normwise *> reciprocal condition number. Compared with the threshold *> sqrt(n) * dlamch('Epsilon') to determine if the error *> estimate is "guaranteed". These reciprocal condition *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *> appropriately scaled matrix Z. *> Let Z = S*A, where S scales each row by a power of the *> radix so all absolute row sums of Z are approximately 1. *> *> See Lapack Working Note 165 for further details and extra *> cautions. *> \endverbatim *> *> \param[out] ERR_BNDS_COMP *> \verbatim *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) *> For each right-hand side, this array contains information about *> various error bounds and condition numbers corresponding to the *> componentwise relative error, which is defined as follows: *> *> Componentwise relative error in the ith solution vector: *> abs(XTRUE(j,i) - X(j,i)) *> max_j ---------------------- *> abs(X(j,i)) *> *> The array is indexed by the right-hand side i (on which the *> componentwise relative error depends), and the type of error *> information as described below. There currently are up to three *> pieces of information returned for each right-hand side. If *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most *> the first (:,N_ERR_BNDS) entries are returned. *> *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith *> right-hand side. *> *> The second index in ERR_BNDS_COMP(:,err) contains the following *> three fields: *> err = 1 "Trust/don't trust" boolean. Trust the answer if the *> reciprocal condition number is less than the threshold *> sqrt(n) * dlamch('Epsilon'). *> *> err = 2 "Guaranteed" error bound: The estimated forward error, *> almost certainly within a factor of 10 of the true error *> so long as the next entry is greater than the threshold *> sqrt(n) * dlamch('Epsilon'). This error bound should only *> be trusted if the previous boolean is true. *> *> err = 3 Reciprocal condition number: Estimated componentwise *> reciprocal condition number. Compared with the threshold *> sqrt(n) * dlamch('Epsilon') to determine if the error *> estimate is "guaranteed". These reciprocal condition *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some *> appropriately scaled matrix Z. *> Let Z = S*(A*diag(x)), where x is the solution for the *> current right-hand side and S scales each row of *> A*diag(x) by a power of the radix so all absolute row *> sums of Z are approximately 1. *> *> See Lapack Working Note 165 for further details and extra *> cautions. *> \endverbatim *> *> \param[in] NPARAMS *> \verbatim *> NPARAMS is INTEGER *> Specifies the number of parameters set in PARAMS. If <= 0, the *> PARAMS array is never referenced and default values are used. *> \endverbatim *> *> \param[in,out] PARAMS *> \verbatim *> PARAMS is DOUBLE PRECISION array, dimension NPARAMS *> Specifies algorithm parameters. If an entry is < 0.0, then *> that entry will be filled with default value used for that *> parameter. Only positions up to NPARAMS are accessed; defaults *> are used for higher-numbered parameters. *> *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative *> refinement or not. *> Default: 1.0D+0 *> = 0.0: No refinement is performed, and no error bounds are *> computed. *> = 1.0: Use the double-precision refinement algorithm, *> possibly with doubled-single computations if the *> compilation environment does not support DOUBLE *> PRECISION. *> (other values are reserved for future use) *> *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual *> computations allowed for refinement. *> Default: 10 *> Aggressive: Set to 100 to permit convergence using approximate *> factorizations or factorizations other than LU. If *> the factorization uses a technique other than *> Gaussian elimination, the guarantees in *> err_bnds_norm and err_bnds_comp may no longer be *> trustworthy. *> *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code *> will attempt to find a solution with small componentwise *> relative error in the double-precision algorithm. Positive *> is true, 0.0 is false. *> Default: 1.0 (attempt componentwise convergence) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (2*N) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: Successful exit. The solution to every right-hand side is *> guaranteed. *> < 0: If INFO = -i, the i-th argument had an illegal value *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization *> has been completed, but the factor U is exactly singular, so *> the solution and error bounds could not be computed. RCOND = 0 *> is returned. *> = N+J: The solution corresponding to the Jth right-hand side is *> not guaranteed. The solutions corresponding to other right- *> hand sides K with K > J may not be guaranteed as well, but *> only the first such right-hand side is reported. If a small *> componentwise error is not requested (PARAMS(3) = 0.0) then *> the Jth right-hand side is the first with a normwise error *> bound that is not guaranteed (the smallest J such *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) *> the Jth right-hand side is the first with either a normwise or *> componentwise error bound that is not guaranteed (the smallest *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information *> about all of the right-hand sides check ERR_BNDS_NORM or *> ERR_BNDS_COMP. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gbrfsx * * ===================================================================== SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, $ AFB, $ LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND, $ BERR, N_ERR_BNDS, ERR_BNDS_NORM, $ ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS, EQUED INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS, $ NPARAMS, N_ERR_BNDS DOUBLE PRECISION RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), $ X( LDX , * ),WORK( * ) DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ), $ ERR_BNDS_NORM( NRHS, * ), $ ERR_BNDS_COMP( NRHS, * ), RWORK( * ) * .. * * ================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT DOUBLE PRECISION DZTHRESH_DEFAULT PARAMETER ( ITREF_DEFAULT = 1.0D+0 ) PARAMETER ( ITHRESH_DEFAULT = 10.0D+0 ) PARAMETER ( COMPONENTWISE_DEFAULT = 1.0D+0 ) PARAMETER ( RTHRESH_DEFAULT = 0.5D+0 ) PARAMETER ( DZTHRESH_DEFAULT = 0.25D+0 ) INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I, $ LA_LINRX_CWISE_I PARAMETER ( LA_LINRX_ITREF_I = 1, $ LA_LINRX_ITHRESH_I = 2 ) PARAMETER ( LA_LINRX_CWISE_I = 3 ) INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I, $ LA_LINRX_RCOND_I PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 ) PARAMETER ( LA_LINRX_RCOND_I = 3 ) * .. * .. Local Scalars .. CHARACTER(1) NORM LOGICAL ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE INTEGER J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS, $ ITHRESH DOUBLE PRECISION ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND, $ CWISE_WRONG, RTHRESH, UNSTABLE_THRESH * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT, TRANSFER * .. * .. External Functions .. EXTERNAL LSAME, ILAPREC EXTERNAL DLAMCH, ZLANGB, ZLA_GBRCOND_X, $ ZLA_GBRCOND_C DOUBLE PRECISION DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C LOGICAL LSAME INTEGER ILATRANS, ILAPREC * .. * .. Executable Statements .. * * Check the input parameters. * INFO = 0 TRANS_TYPE = ILATRANS( TRANS ) REF_TYPE = INT( ITREF_DEFAULT ) IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT ELSE REF_TYPE = PARAMS( LA_LINRX_ITREF_I ) END IF END IF * * Set default parameters. * ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' ) ITHRESH = INT( ITHRESH_DEFAULT ) RTHRESH = RTHRESH_DEFAULT UNSTABLE_THRESH = DZTHRESH_DEFAULT IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0 * IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH ELSE ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) ) END IF END IF IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN IF ( IGNORE_CWISE ) THEN PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0 ELSE PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0 END IF ELSE IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0 END IF END IF IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN N_NORMS = 0 ELSE IF ( IGNORE_CWISE ) THEN N_NORMS = 1 ELSE N_NORMS = 2 END IF * NOTRAN = LSAME( TRANS, 'N' ) ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) * * Test input parameters. * IF( TRANS_TYPE.EQ.-1 ) THEN INFO = -1 ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND. $ .NOT.LSAME( EQUED, 'N' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KL.LT.0 ) THEN INFO = -4 ELSE IF( KU.LT.0 ) THEN INFO = -5 ELSE IF( NRHS.LT.0 ) THEN INFO = -6 ELSE IF( LDAB.LT.KL+KU+1 ) THEN INFO = -8 ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN INFO = -10 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -13 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -15 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGBRFSX', -INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN RCOND = 1.0D+0 DO J = 1, NRHS BERR( J ) = 0.0D+0 IF ( N_ERR_BNDS .GE. 1 ) THEN ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF IF ( N_ERR_BNDS .GE. 2 ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0 END IF IF ( N_ERR_BNDS .GE. 3 ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0 END IF END DO RETURN END IF * * Default to failure. * RCOND = 0.0D+0 DO J = 1, NRHS BERR( J ) = 1.0D+0 IF ( N_ERR_BNDS .GE. 1 ) THEN ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF IF ( N_ERR_BNDS .GE. 2 ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 END IF IF ( N_ERR_BNDS .GE. 3 ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0 END IF END DO * * Compute the norm of A and the reciprocal of the condition * number of A. * IF( NOTRAN ) THEN NORM = 'I' ELSE NORM = '1' END IF ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK ) CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, $ WORK, RWORK, INFO ) * * Perform refinement on each right-hand side * IF ( REF_TYPE .NE. 0 .AND. INFO .EQ. 0 ) THEN PREC_TYPE = ILAPREC( 'E' ) IF ( NOTRAN ) THEN CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, $ KU, $ NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B, $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, $ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1), $ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), $ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE, $ INFO ) ELSE CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, $ KU, $ NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B, $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, $ ERR_BNDS_COMP, WORK, RWORK, WORK(N+1), $ TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), $ RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE, $ INFO ) END IF END IF ERR_LBND = MAX( 10.0D+0, $ SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' ) IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN * * Compute scaled normwise condition number cond(A*C). * IF ( COLEQU .AND. NOTRAN ) THEN RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, $ AFB, $ LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK ) ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, $ AFB, $ LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK ) ELSE RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, $ AFB, $ LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK ) END IF DO J = 1, NRHS * * Cap the error at 1.0. * IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0) $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 * * Threshold the error (see LAWN). * IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0 IF ( INFO .LE. N ) INFO = N + J ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND ) $ THEN ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF * * Save the condition number. * IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP END IF END DO END IF IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN * * Compute componentwise condition number cond(A*diag(Y(:,J))) for * each right-hand side using the current solution as an estimate of * the true solution. If the componentwise error estimate is too * large, then the solution is a lousy estimate of truth and the * estimated RCOND may be too optimistic. To avoid misleading users, * the inverse condition number is set to 0.0 when the estimated * cwise error is at least CWISE_WRONG. * CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) ) DO J = 1, NRHS IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG ) $ THEN RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB, $ AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK ) ELSE RCOND_TMP = 0.0D+0 END IF * * Cap the error at 1.0. * IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 ) $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 * * Threshold the error (see LAWN). * IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0 IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0 $ .AND. INFO.LT.N + J ) INFO = N + J ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) $ .LT. ERR_LBND ) THEN ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0 END IF * * Save the condition number. * IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP END IF END DO END IF * RETURN * * End of ZGBRFSX * END