numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgedmdq.f90 | 33787B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
!> \brief \b ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices. ! ! =========== DOCUMENTATION =========== ! ! Definition: ! =========== ! ! SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & ! WHTSVD, M, N, F, LDF, X, LDX, Y, & ! LDY, NRNK, TOL, K, EIGS, & ! Z, LDZ, RES, B, LDB, V, LDV, & ! S, LDS, ZWORK, LZWORK, WORK, LWORK, & ! IWORK, LIWORK, INFO ) !..... ! USE, INTRINSIC :: iso_fortran_env, only: real64 ! IMPLICIT NONE ! INTEGER, PARAMETER :: WP = real64 !..... ! Scalar arguments ! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & ! JOBT, JOBF ! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & ! LDY, NRNK, LDZ, LDB, LDV, & ! LDS, LZWORK, LWORK, LIWORK ! INTEGER, INTENT(OUT) :: INFO, K ! REAL(KIND=WP), INTENT(IN) :: TOL ! Array arguments ! COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) ! COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & ! Z(LDZ,*), B(LDB,*), & ! V(LDV,*), S(LDS,*) ! COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) ! COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) ! REAL(KIND=WP), INTENT(OUT) :: RES(*) ! REAL(KIND=WP), INTENT(OUT) :: WORK(*) ! INTEGER, INTENT(OUT) :: IWORK(*) !............................................................ !> \par Purpose: ! ============= !> \verbatim !> ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for !> a pair of data snapshot matrices, using a QR factorization !> based compression of the data. For the input matrices !> X and Y such that Y = A*X with an unaccessible matrix !> A, ZGEDMDQ computes a certain number of Ritz pairs of A using !> the standard Rayleigh-Ritz extraction from a subspace of !> range(X) that is determined using the leading left singular !> vectors of X. Optionally, ZGEDMDQ returns the residuals !> of the computed Ritz pairs, the information needed for !> a refinement of the Ritz vectors, or the eigenvectors of !> the Exact DMD. !> For further details see the references listed !> below. For more details of the implementation see [3]. !> \endverbatim !............................................................ !> \par References: ! ================ !> \verbatim !> [1] P. Schmid: Dynamic mode decomposition of numerical !> and experimental data, !> Journal of Fluid Mechanics 656, 5-28, 2010. !> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal !> decompositions: analysis and enhancements, !> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. !> [3] Z. Drmac: A LAPACK implementation of the Dynamic !> Mode Decomposition I. Technical report. AIMDyn Inc. !> and LAPACK Working Note 298. !> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. !> Brunton, N. Kutz: On Dynamic Mode Decomposition: !> Theory and Applications, Journal of Computational !> Dynamics 1(2), 391 -421, 2014. !> \endverbatim !...................................................................... !> \par Developed and supported by: ! ================================ !> \verbatim !> Developed and coded by Zlatko Drmac, Faculty of Science, !> University of Zagreb; drmac@math.hr !> In cooperation with !> AIMdyn Inc., Santa Barbara, CA. !> and supported by !> - DARPA SBIR project "Koopman Operator-Based Forecasting !> for Nonstationary Processes from Near-Term, Limited !> Observational Data" Contract No: W31P4Q-21-C-0007 !> - DARPA PAI project "Physics-Informed Machine Learning !> Methodologies" Contract No: HR0011-18-9-0033 !> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic !> Framework for Space-Time Analysis of Process Dynamics" !> Contract No: HR0011-16-C-0116 !> Any opinions, findings and conclusions or recommendations !> expressed in this material are those of the author and !> do not necessarily reflect the views of the DARPA SBIR !> Program Office. !> \endverbatim !...................................................................... !> \par Developed and supported by: ! ================================ !> \verbatim !> Distribution Statement A: !> Approved for Public Release, Distribution Unlimited. !> Cleared by DARPA on September 29, 2022 !> \endverbatim !============================================================ ! Arguments ! ========= ! !> \param[in] JOBS !> \verbatim !> JOBS (input) CHARACTER*1 !> Determines whether the initial data snapshots are scaled !> by a diagonal matrix. The data snapshots are the columns !> of F. The leading N-1 columns of F are denoted X and the !> trailing N-1 columns are denoted Y. !> 'S' :: The data snapshots matrices X and Y are multiplied !> with a diagonal matrix D so that X*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'C' :: The snapshots are scaled as with the 'S' option. !> If it is found that an i-th column of X is zero !> vector and the corresponding i-th column of Y is !> non-zero, then the i-th column of Y is set to !> zero and a warning flag is raised. !> 'Y' :: The data snapshots matrices X and Y are multiplied !> by a diagonal matrix D so that Y*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'N' :: No data scaling. !> \endverbatim !..... !> \param[in] JOBZ !> \verbatim !> JOBZ (input) CHARACTER*1 !> Determines whether the eigenvectors (Koopman modes) will !> be computed. !> 'V' :: The eigenvectors (Koopman modes) will be computed !> and returned in the matrix Z. !> See the description of Z. !> 'F' :: The eigenvectors (Koopman modes) will be returned !> in factored form as the product Z*V, where Z !> is orthonormal and V contains the eigenvectors !> of the corresponding Rayleigh quotient. !> See the descriptions of F, V, Z. !> 'Q' :: The eigenvectors (Koopman modes) will be returned !> in factored form as the product Q*Z, where Z !> contains the eigenvectors of the compression of the !> underlying discretized operator onto the span of !> the data snapshots. See the descriptions of F, V, Z. !> Q is from the initial QR factorization. !> 'N' :: The eigenvectors are not computed. !> \endverbatim !..... !> \param[in] JOBR !> \verbatim !> JOBR (input) CHARACTER*1 !> Determines whether to compute the residuals. !> 'R' :: The residuals for the computed eigenpairs will !> be computed and stored in the array RES. !> See the description of RES. !> For this option to be legal, JOBZ must be 'V'. !> 'N' :: The residuals are not computed. !> \endverbatim !..... !> \param[in] JOBQ !> \verbatim !> JOBQ (input) CHARACTER*1 !> Specifies whether to explicitly compute and return the !> unitary matrix from the QR factorization. !> 'Q' :: The matrix Q of the QR factorization of the data !> snapshot matrix is computed and stored in the !> array F. See the description of F. !> 'N' :: The matrix Q is not explicitly computed. !> \endverbatim !..... !> \param[in] JOBT !> \verbatim !> JOBT (input) CHARACTER*1 !> Specifies whether to return the upper triangular factor !> from the QR factorization. !> 'R' :: The matrix R of the QR factorization of the data !> snapshot matrix F is returned in the array Y. !> See the description of Y and Further details. !> 'N' :: The matrix R is not returned. !> \endverbatim !..... !> \param[in] JOBF !> \verbatim !> JOBF (input) CHARACTER*1 !> Specifies whether to store information needed for post- !> processing (e.g. computing refined Ritz vectors) !> 'R' :: The matrix needed for the refinement of the Ritz !> vectors is computed and stored in the array B. !> See the description of B. !> 'E' :: The unscaled eigenvectors of the Exact DMD are !> computed and returned in the array B. See the !> description of B. !> 'N' :: No eigenvector refinement data is computed. !> To be useful on exit, this option needs JOBQ='Q'. !> \endverbatim !..... !> \param[in] WHTSVD !> \verbatim !> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } !> Allows for a selection of the SVD algorithm from the !> LAPACK library. !> 1 :: ZGESVD (the QR SVD algorithm) !> 2 :: ZGESDD (the Divide and Conquer algorithm; if enough !> workspace available, this is the fastest option) !> 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 !> are the most accurate options) !> 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 !> are the most accurate options) !> For the four methods above, a significant difference in !> the accuracy of small singular values is possible if !> the snapshots vary in norm so that X is severely !> ill-conditioned. If small (smaller than EPS*||X||) !> singular values are of interest and JOBS=='N', then !> the options (3, 4) give the most accurate results, where !> the option 4 is slightly better and with stronger !> theoretical background. !> If JOBS=='S', i.e. the columns of X will be normalized, !> then all methods give nearly equally accurate results. !> \endverbatim !..... !> \param[in] M !> \verbatim !> M (input) INTEGER, M >= 0 !> The state space dimension (the number of rows of F). !> \endverbatim !..... !> \param[in] N !> \verbatim !> N (input) INTEGER, 0 <= N <= M !> The number of data snapshots from a single trajectory, !> taken at equidistant discrete times. This is the !> number of columns of F. !> \endverbatim !..... !> \param[in,out] F !> \verbatim !> F (input/output) COMPLEX(KIND=WP) M-by-N array !> > On entry, !> the columns of F are the sequence of data snapshots !> from a single trajectory, taken at equidistant discrete !> times. It is assumed that the column norms of F are !> in the range of the normalized floating point numbers. !> < On exit, !> If JOBQ == 'Q', the array F contains the orthogonal !> matrix/factor of the QR factorization of the initial !> data snapshots matrix F. See the description of JOBQ. !> If JOBQ == 'N', the entries in F strictly below the main !> diagonal contain, column-wise, the information on the !> Householder vectors, as returned by ZGEQRF. The !> remaining information to restore the orthogonal matrix !> of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). !> See the description of ZWORK. !> \endverbatim !..... !> \param[in] LDF !> \verbatim !> LDF (input) INTEGER, LDF >= M !> The leading dimension of the array F. !> \endverbatim !..... !> \param[in,out] X !> \verbatim !> X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array !> X is used as workspace to hold representations of the !> leading N-1 snapshots in the orthonormal basis computed !> in the QR factorization of F. !> On exit, the leading K columns of X contain the leading !> K left singular vectors of the above described content !> of X. To lift them to the space of the left singular !> vectors U(:,1:K) of the input data, pre-multiply with the !> Q factor from the initial QR factorization. !> See the descriptions of F, K, V and Z. !> \endverbatim !..... !> \param[in] LDX !> \verbatim !> LDX (input) INTEGER, LDX >= N !> The leading dimension of the array X. !> \endverbatim !..... !> \param[in,out] Y !> \verbatim !> Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array !> Y is used as workspace to hold representations of the !> trailing N-1 snapshots in the orthonormal basis computed !> in the QR factorization of F. !> On exit, !> If JOBT == 'R', Y contains the MIN(M,N)-by-N upper !> triangular factor from the QR factorization of the data !> snapshot matrix F. !> \endverbatim !..... !> \param[in] LDY !> \verbatim !> LDY (input) INTEGER , LDY >= N !> The leading dimension of the array Y. !> \endverbatim !..... !> \param[in] NRNK !> \verbatim !> NRNK (input) INTEGER !> Determines the mode how to compute the numerical rank, !> i.e. how to truncate small singular values of the input !> matrix X. On input, if !> NRNK = -1 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(1) !> This option is recommended. !> NRNK = -2 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(i-1) !> This option is included for R&D purposes. !> It requires highly accurate SVD, which !> may not be feasible. !> The numerical rank can be enforced by using positive !> value of NRNK as follows: !> 0 < NRNK <= N-1 :: at most NRNK largest singular values !> will be used. If the number of the computed nonzero !> singular values is less than NRNK, then only those !> nonzero values will be used and the actually used !> dimension is less than NRNK. The actual number of !> the nonzero singular values is returned in the variable !> K. See the description of K. !> \endverbatim !..... !> \param[in] TOL !> \verbatim !> TOL (input) REAL(KIND=WP), 0 <= TOL < 1 !> The tolerance for truncating small singular values. !> See the description of NRNK. !> \endverbatim !..... !> \param[out] K !> \verbatim !> K (output) INTEGER, 0 <= K <= N !> The dimension of the SVD/POD basis for the leading N-1 !> data snapshots (columns of F) and the number of the !> computed Ritz pairs. The value of K is determined !> according to the rule set by the parameters NRNK and !> TOL. See the descriptions of NRNK and TOL. !> \endverbatim !..... !> \param[out] EIGS !> \verbatim !> EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array !> The leading K (K<=N-1) entries of EIGS contain !> the computed eigenvalues (Ritz values). !> See the descriptions of K, and Z. !> \endverbatim !..... !> \param[out] Z !> \verbatim !> Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array !> If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) !> is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. !> If JOBZ == 'F', then the Z(:,i)'s are given implicitly as !> Z*V, where Z contains orthonormal matrix (the product of !> Q from the initial QR factorization and the SVD/POD_basis !> returned by ZGEDMD in X) and the second factor (the !> eigenvectors of the Rayleigh quotient) is in the array V, !> as returned by ZGEDMD. That is, X(:,1:K)*V(:,i) !> is an eigenvector corresponding to EIGS(i). The columns !> of V(1:K,1:K) are the computed eigenvectors of the !> K-by-K Rayleigh quotient. !> See the descriptions of EIGS, X and V. !> \endverbatim !..... !> \param[in] LDZ !> \verbatim !> LDZ (input) INTEGER , LDZ >= M !> The leading dimension of the array Z. !> \endverbatim !..... !> \param[out] RES !> \verbatim !> RES (output) REAL(KIND=WP) (N-1)-by-1 array !> RES(1:K) contains the residuals for the K computed !> Ritz pairs, !> RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. !> See the description of EIGS and Z. !> \endverbatim !..... !> \param[out] B !> \verbatim !> B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array. !> IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can !> be used for computing the refined vectors; see further !> details in the provided references. !> If JOBF == 'E', B(1:N,1;K) contains !> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the !> Exact DMD, up to scaling by the inverse eigenvalues. !> In both cases, the content of B can be lifted to the !> original dimension of the input data by pre-multiplying !> with the Q factor from the initial QR factorization. !> Here A denotes a compression of the underlying operator. !> See the descriptions of F and X. !> If JOBF =='N', then B is not referenced. !> \endverbatim !..... !> \param[in] LDB !> \verbatim !> LDB (input) INTEGER, LDB >= MIN(M,N) !> The leading dimension of the array B. !> \endverbatim !..... !> \param[out] V !> \verbatim !> V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array !> On exit, V(1:K,1:K) V contains the K eigenvectors of !> the Rayleigh quotient. The Ritz vectors !> (returned in Z) are the product of Q from the initial QR !> factorization (see the description of F) X (see the !> description of X) and V. !> \endverbatim !..... !> \param[in] LDV !> \verbatim !> LDV (input) INTEGER, LDV >= N-1 !> The leading dimension of the array V. !> \endverbatim !..... !> \param[out] S !> \verbatim !> S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array !> The array S(1:K,1:K) is used for the matrix Rayleigh !> quotient. This content is overwritten during !> the eigenvalue decomposition by ZGEEV. !> See the description of K. !> \endverbatim !..... !> \param[in] LDS !> \verbatim !> LDS (input) INTEGER, LDS >= N-1 !> The leading dimension of the array S. !> \endverbatim !..... !> \param[out] ZWORK !> \verbatim !> ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array !> On exit, !> ZWORK(1:MIN(M,N)) contains the scalar factors of the !> elementary reflectors as returned by ZGEQRF of the !> M-by-N input matrix F. !> If the call to ZGEDMDQ is only workspace query, then !> ZWORK(1) contains the minimal complex workspace length and !> ZWORK(2) is the optimal complex workspace length. !> Hence, the length of work is at least 2. !> See the description of LZWORK. !> \endverbatim !..... !> \param[in] LZWORK !> \verbatim !> LZWORK (input) INTEGER !> The minimal length of the workspace vector ZWORK. !> LZWORK is calculated as follows: !> Let MLWQR = N (minimal workspace for ZGEQRF[M,N]) !> MLWDMD = minimal workspace for ZGEDMD (see the !> description of LWORK in ZGEDMD) !> MLWMQR = N (minimal workspace for !> ZUNMQR['L','N',M,N,N]) !> MLWGQR = N (minimal workspace for ZUNGQR[M,N,N]) !> MINMN = MIN(M,N) !> Then !> LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD) !> is further updated as follows: !> if JOBZ == 'V' or JOBZ == 'F' THEN !> LZWORK = MAX(LZWORK, MINMN+MLWMQR) !> if JOBQ == 'Q' THEN !> LZWORK = MAX(ZLWORK, MINMN+MLWGQR) !> \endverbatim !..... !> \param[out] WORK !> \verbatim !> WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array !> On exit, !> WORK(1:N-1) contains the singular values of !> the input submatrix F(1:M,1:N-1). !> If the call to ZGEDMDQ is only workspace query, then !> WORK(1) contains the minimal workspace length and !> WORK(2) is the optimal workspace length. hence, the !> length of work is at least 2. !> See the description of LWORK. !> \endverbatim !..... !> \param[in] LWORK !> \verbatim !> LWORK (input) INTEGER !> The minimal length of the workspace vector WORK. !> LWORK is the same as in ZGEDMD, because in ZGEDMDQ !> only ZGEDMD requires real workspace for snapshots !> of dimensions MIN(M,N)-by-(N-1). !> If on entry LWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace length for WORK. !> \endverbatim !..... !> \param[out] IWORK !> \verbatim !> IWORK (workspace/output) INTEGER LIWORK-by-1 array !> Workspace that is required only if WHTSVD equals !> 2 , 3 or 4. (See the description of WHTSVD). !> If on entry LWORK =-1 or LIWORK=-1, then the !> minimal length of IWORK is computed and returned in !> IWORK(1). See the description of LIWORK. !> \endverbatim !..... !> \param[in] LIWORK !> \verbatim !> LIWORK (input) INTEGER !> The minimal length of the workspace vector IWORK. !> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 !> Let M1=MIN(M,N), N1=N-1. Then !> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) !> If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) !> If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) !> If on entry LIWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace lengths for both WORK and !> IWORK. See the descriptions of WORK and IWORK. !> \endverbatim !..... !> \param[out] INFO !> \verbatim !> INFO (output) INTEGER !> -i < 0 :: On entry, the i-th argument had an !> illegal value !> = 0 :: Successful return. !> = 1 :: Void input. Quick exit (M=0 or N=0). !> = 2 :: The SVD computation of X did not converge. !> Suggestion: Check the input data and/or !> repeat with different WHTSVD. !> = 3 :: The computation of the eigenvalues did not !> converge. !> = 4 :: If data scaling was requested on input and !> the procedure found inconsistency in the data !> such that for some column index i, !> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set !> to zero if JOBS=='C'. The computation proceeds !> with original or modified data and warning !> flag is set with INFO=4. !> \endverbatim ! ! Authors: ! ======== ! !> \author Zlatko Drmac ! !> \ingroup gedmd ! !............................................................. !............................................................. SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & WHTSVD, M, N, F, LDF, X, LDX, Y, & LDY, NRNK, TOL, K, EIGS, & Z, LDZ, RES, B, LDB, V, LDV, & S, LDS, ZWORK, LZWORK, WORK, LWORK, & IWORK, LIWORK, INFO ) ! ! -- LAPACK driver routine -- ! ! -- LAPACK is a software package provided by University of -- ! -- Tennessee, University of California Berkeley, University of -- ! -- Colorado Denver and NAG Ltd.. -- ! !..... USE, INTRINSIC :: iso_fortran_env, only: real64 IMPLICIT NONE INTEGER, PARAMETER :: WP = real64 ! ! Scalar arguments ! ~~~~~~~~~~~~~~~~ CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & JOBT, JOBF INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & LDY, NRNK, LDZ, LDB, LDV, & LDS, LZWORK, LWORK, LIWORK INTEGER, INTENT(OUT) :: INFO, K REAL(KIND=WP), INTENT(IN) :: TOL ! ! Array arguments ! ~~~~~~~~~~~~~~~ COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & Z(LDZ,*), B(LDB,*), & V(LDV,*), S(LDS,*) COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) REAL(KIND=WP), INTENT(OUT) :: RES(*) REAL(KIND=WP), INTENT(OUT) :: WORK(*) INTEGER, INTENT(OUT) :: IWORK(*) ! ! Parameters ! ~~~~~~~~~~ REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP ! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) ! ! Local scalars ! ~~~~~~~~~~~~~ INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, & MLWDMD, MLWGQR, MLWMQR, MLWORK, & MLWQR, OLWDMD, OLWGQR, OLWMQR, & OLWORK, OLWQR LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & WNTTRF, WNTRES, WNTVEC, WNTVCF, & WNTVCQ, WNTREF, WNTEX CHARACTER(LEN=1) :: JOBVL ! ! External functions (BLAS and LAPACK) ! ~~~~~~~~~~~~~~~~~ LOGICAL LSAME EXTERNAL LSAME ! ! External subroutines (BLAS and LAPACK) ! ~~~~~~~~~~~~~~~~~~~~ EXTERNAL ZGEDMD, ZGEQRF, ZLACPY, ZLASET, ZUNGQR, & ZUNMQR, XERBLA ! ! Intrinsic functions ! ~~~~~~~~~~~~~~~~~~~ INTRINSIC MAX, MIN, INT !.......................................................... ! ! Test the input arguments WNTRES = LSAME(JOBR,'R') SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) SCCOLY = LSAME(JOBS,'Y') WNTVEC = LSAME(JOBZ,'V') WNTVCF = LSAME(JOBZ,'F') WNTVCQ = LSAME(JOBZ,'Q') WNTREF = LSAME(JOBF,'R') WNTEX = LSAME(JOBF,'E') WANTQ = LSAME(JOBQ,'Q') WNTTRF = LSAME(JOBT,'R') MINMN = MIN(M,N) INFO = 0 LQUERY = ( (LZWORK == -1) .OR. (LWORK == -1) .OR. (LIWORK == -1) ) ! IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & LSAME(JOBS,'N')) ) THEN INFO = -1 ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & .OR. LSAME(JOBZ,'N')) ) THEN INFO = -2 ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & ( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN INFO = -3 ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN INFO = -4 ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN INFO = -5 ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & LSAME(JOBF,'N') ) ) THEN INFO = -6 ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & (WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN INFO = -7 ELSE IF ( M < 0 ) THEN INFO = -8 ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN INFO = -9 ELSE IF ( LDF < M ) THEN INFO = -11 ELSE IF ( LDX < MINMN ) THEN INFO = -13 ELSE IF ( LDY < MINMN ) THEN INFO = -15 ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & ((NRNK >= 1).AND.(NRNK <=N ))) ) THEN INFO = -16 ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN INFO = -17 ELSE IF ( LDZ < M ) THEN INFO = -21 ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN INFO = -24 ELSE IF ( LDV < N-1 ) THEN INFO = -26 ELSE IF ( LDS < N-1 ) THEN INFO = -28 END IF ! IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN JOBVL = 'V' ELSE JOBVL = 'N' END IF IF ( INFO == 0 ) THEN ! Compute the minimal and the optimal workspace ! requirements. Simulate running the code and ! determine minimal and optimal sizes of the ! workspace at any moment of the run. IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN ! All output except K is void. INFO=1 signals ! the void input. In case of a workspace query, ! the minimal workspace lengths are returned. IF ( LQUERY ) THEN IWORK(1) = 1 ZWORK(1) = 2 ZWORK(2) = 2 WORK(1) = 2 WORK(2) = 2 ELSE K = 0 END IF INFO = 1 RETURN END IF MLRWRK = 2 MLWORK = 2 OLWORK = 2 IMINWR = 1 MLWQR = MAX(1,N) ! Minimal workspace length for ZGEQRF. MLWORK = MAX(MLWORK,MINMN + MLWQR) IF ( LQUERY ) THEN CALL ZGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, & INFO1 ) OLWQR = INT(ZWORK(1)) OLWORK = MAX(OLWORK,MINMN + OLWQR) END IF CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& N-1, X, LDX, Y, LDY, NRNK, TOL, K, & EIGS, Z, LDZ, RES, B, LDB, V, LDV, & S, LDS, ZWORK, -1, WORK, -1, IWORK,& -1, INFO1 ) MLWDMD = INT(ZWORK(1)) MLWORK = MAX(MLWORK, MINMN + MLWDMD) MLRWRK = MAX(MLRWRK, INT(WORK(1))) IMINWR = MAX(IMINWR, IWORK(1)) IF ( LQUERY ) THEN OLWDMD = INT(ZWORK(2)) OLWORK = MAX(OLWORK, MINMN+OLWDMD) END IF IF ( WNTVEC .OR. WNTVCF ) THEN MLWMQR = MAX(1,N) MLWORK = MAX(MLWORK,MINMN+MLWMQR) IF ( LQUERY ) THEN CALL ZUNMQR( 'L','N', M, N, MINMN, F, LDF, & ZWORK, Z, LDZ, ZWORK, -1, INFO1 ) OLWMQR = INT(ZWORK(1)) OLWORK = MAX(OLWORK,MINMN+OLWMQR) END IF END IF IF ( WANTQ ) THEN MLWGQR = MAX(1,N) MLWORK = MAX(MLWORK,MINMN+MLWGQR) IF ( LQUERY ) THEN CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & ZWORK, -1, INFO1 ) OLWGQR = INT(ZWORK(1)) OLWORK = MAX(OLWORK,MINMN+OLWGQR) END IF END IF IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34 IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32 IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30 END IF IF( INFO /= 0 ) THEN CALL XERBLA( 'ZGEDMDQ', -INFO ) RETURN ELSE IF ( LQUERY ) THEN ! Return minimal and optimal workspace sizes IWORK(1) = IMINWR ZWORK(1) = MLWORK ZWORK(2) = OLWORK WORK(1) = MLRWRK WORK(2) = MLRWRK RETURN END IF !..... ! Initial QR factorization that is used to represent the ! snapshots as elements of lower dimensional subspace. ! For large scale computation with M >> N, at this place ! one can use an out of core QRF. ! CALL ZGEQRF( M, N, F, LDF, ZWORK, & ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) ! ! Define X and Y as the snapshots representations in the ! orthogonal basis computed in the QR factorization. ! X corresponds to the leading N-1 and Y to the trailing ! N-1 snapshots. CALL ZLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX ) CALL ZLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) CALL ZLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) IF ( M >= 3 ) THEN CALL ZLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, & Y(3,1), LDY ) END IF ! ! Compute the DMD of the projected snapshot pairs (X,Y) CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & N-1, X, LDX, Y, LDY, NRNK, TOL, K, & EIGS, Z, LDZ, RES, B, LDB, V, LDV, & S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, & WORK, LWORK, IWORK, LIWORK, INFO1 ) IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN ! Return with error code. See ZGEDMD for details. INFO = INFO1 RETURN ELSE INFO = INFO1 END IF ! ! The Ritz vectors (Koopman modes) can be explicitly ! formed or returned in factored form. IF ( WNTVEC ) THEN ! Compute the eigenvectors explicitly. IF ( M > MINMN ) CALL ZLASET( 'A', M-MINMN, K, ZZERO, & ZZERO, Z(MINMN+1,1), LDZ ) CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) ELSE IF ( WNTVCF ) THEN ! Return the Ritz vectors (eigenvectors) in factored ! form Z*V, where Z contains orthonormal matrix (the ! product of Q from the initial QR factorization and ! the SVD/POD_basis returned by ZGEDMD in X) and the ! second factor (the eigenvectors of the Rayleigh ! quotient) is in the array V, as returned by ZGEDMD. CALL ZLACPY( 'A', N, K, X, LDX, Z, LDZ ) IF ( M > N ) CALL ZLASET( 'A', M-N, K, ZZERO, ZZERO, & Z(N+1,1), LDZ ) CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) END IF ! ! Some optional output variables: ! ! The upper triangular factor R in the initial QR ! factorization is optionally returned in the array Y. ! This is useful if this call to ZGEDMDQ is to be ! followed by a streaming DMD that is implemented in a ! QR compressed form. IF ( WNTTRF ) THEN ! Return the upper triangular R in Y CALL ZLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY ) CALL ZLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) END IF ! ! The orthonormal/unitary factor Q in the initial QR ! factorization is optionally returned in the array F. ! Same as with the triangular factor above, this is ! useful in a streaming DMD. IF ( WANTQ ) THEN ! Q overwrites F CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) END IF ! RETURN ! END SUBROUTINE ZGEDMDQ