numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgeesx.f | 16544B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
*> \brief <b> ZGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGEESX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeesx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeesx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeesx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W, * VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, * BWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBVS, SENSE, SORT * INTEGER INFO, LDA, LDVS, LWORK, N, SDIM * DOUBLE PRECISION RCONDE, RCONDV * .. * .. Array Arguments .. * LOGICAL BWORK( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) * .. * .. Function Arguments .. * LOGICAL SELECT * EXTERNAL SELECT * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur *> vectors Z. This gives the Schur factorization A = Z*T*(Z**H). *> *> Optionally, it also orders the eigenvalues on the diagonal of the *> Schur form so that selected eigenvalues are at the top left; *> computes a reciprocal condition number for the average of the *> selected eigenvalues (RCONDE); and computes a reciprocal condition *> number for the right invariant subspace corresponding to the *> selected eigenvalues (RCONDV). The leading columns of Z form an *> orthonormal basis for this invariant subspace. *> *> For further explanation of the reciprocal condition numbers RCONDE *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where *> these quantities are called s and sep respectively). *> *> A complex matrix is in Schur form if it is upper triangular. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBVS *> \verbatim *> JOBVS is CHARACTER*1 *> = 'N': Schur vectors are not computed; *> = 'V': Schur vectors are computed. *> \endverbatim *> *> \param[in] SORT *> \verbatim *> SORT is CHARACTER*1 *> Specifies whether or not to order the eigenvalues on the *> diagonal of the Schur form. *> = 'N': Eigenvalues are not ordered; *> = 'S': Eigenvalues are ordered (see SELECT). *> \endverbatim *> *> \param[in] SELECT *> \verbatim *> SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument *> SELECT must be declared EXTERNAL in the calling subroutine. *> If SORT = 'S', SELECT is used to select eigenvalues to order *> to the top left of the Schur form. *> If SORT = 'N', SELECT is not referenced. *> An eigenvalue W(j) is selected if SELECT(W(j)) is true. *> \endverbatim *> *> \param[in] SENSE *> \verbatim *> SENSE is CHARACTER*1 *> Determines which reciprocal condition numbers are computed. *> = 'N': None are computed; *> = 'E': Computed for average of selected eigenvalues only; *> = 'V': Computed for selected right invariant subspace only; *> = 'B': Computed for both. *> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the N-by-N matrix A. *> On exit, A is overwritten by its Schur form T. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] SDIM *> \verbatim *> SDIM is INTEGER *> If SORT = 'N', SDIM = 0. *> If SORT = 'S', SDIM = number of eigenvalues for which *> SELECT is true. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX*16 array, dimension (N) *> W contains the computed eigenvalues, in the same order *> that they appear on the diagonal of the output Schur form T. *> \endverbatim *> *> \param[out] VS *> \verbatim *> VS is COMPLEX*16 array, dimension (LDVS,N) *> If JOBVS = 'V', VS contains the unitary matrix Z of Schur *> vectors. *> If JOBVS = 'N', VS is not referenced. *> \endverbatim *> *> \param[in] LDVS *> \verbatim *> LDVS is INTEGER *> The leading dimension of the array VS. LDVS >= 1, and if *> JOBVS = 'V', LDVS >= N. *> \endverbatim *> *> \param[out] RCONDE *> \verbatim *> RCONDE is DOUBLE PRECISION *> If SENSE = 'E' or 'B', RCONDE contains the reciprocal *> condition number for the average of the selected eigenvalues. *> Not referenced if SENSE = 'N' or 'V'. *> \endverbatim *> *> \param[out] RCONDV *> \verbatim *> RCONDV is DOUBLE PRECISION *> If SENSE = 'V' or 'B', RCONDV contains the reciprocal *> condition number for the selected right invariant subspace. *> Not referenced if SENSE = 'N' or 'E'. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,2*N). *> Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), *> where SDIM is the number of selected eigenvalues computed by *> this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also *> that an error is only returned if LWORK < max(1,2*N), but if *> SENSE = 'E' or 'V' or 'B' this may not be large enough. *> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates upper bound on the optimal size of the *> array WORK, returns this value as the first entry of the WORK *> array, and no error message related to LWORK is issued by *> XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] BWORK *> \verbatim *> BWORK is LOGICAL array, dimension (N) *> Not referenced if SORT = 'N'. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = i, and i is *> <= N: the QR algorithm failed to compute all the *> eigenvalues; elements 1:ILO-1 and i+1:N of W *> contain those eigenvalues which have converged; if *> JOBVS = 'V', VS contains the transformation which *> reduces A to its partially converged Schur form. *> = N+1: the eigenvalues could not be reordered because some *> eigenvalues were too close to separate (the problem *> is very ill-conditioned); *> = N+2: after reordering, roundoff changed values of some *> complex eigenvalues so that leading eigenvalues in *> the Schur form no longer satisfy SELECT=.TRUE. This *> could also be caused by underflow due to scaling. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup geesx * * ===================================================================== SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, $ W, $ VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK, $ BWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBVS, SENSE, SORT INTEGER INFO, LDA, LDVS, LWORK, N, SDIM DOUBLE PRECISION RCONDE, RCONDV * .. * .. Array Arguments .. LOGICAL BWORK( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) * .. * .. Function Arguments .. LOGICAL SELECT EXTERNAL SELECT * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST, $ WANTSV, WANTVS INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO, $ ITAU, IWRK, LWRK, MAXWRK, MINWRK DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SMLNUM * .. * .. Local Arrays .. DOUBLE PRECISION DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL DLASCL, XERBLA, ZCOPY, ZGEBAK, ZGEBAL, $ ZGEHRD, $ ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 WANTVS = LSAME( JOBVS, 'V' ) WANTST = LSAME( SORT, 'S' ) WANTSN = LSAME( SENSE, 'N' ) WANTSE = LSAME( SENSE, 'E' ) WANTSV = LSAME( SENSE, 'V' ) WANTSB = LSAME( SENSE, 'B' ) LQUERY = ( LWORK.EQ.-1 ) * IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTST ) .AND. $ ( .NOT.LSAME( SORT, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR. $ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN INFO = -11 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of real workspace needed at that point in the * code, as well as the preferred amount for good performance. * CWorkspace refers to complex workspace, and RWorkspace to real * workspace. NB refers to the optimal block size for the * immediately following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by ZHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case. * If SENSE = 'E', 'V' or 'B', then the amount of workspace needed * depends on SDIM, which is computed by the routine ZTRSEN later * in the code.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 LWRK = 1 ELSE MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 ) MINWRK = 2*N * CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS, $ WORK, -1, IEVAL ) HSWORK = INT( WORK( 1 ) ) * IF( .NOT.WANTVS ) THEN MAXWRK = MAX( MAXWRK, HSWORK ) ELSE MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, $ 'ZUNGHR', $ ' ', N, 1, N, -1 ) ) MAXWRK = MAX( MAXWRK, HSWORK ) END IF LWRK = MAXWRK IF( .NOT.WANTSN ) $ LWRK = MAX( LWRK, ( N*N )/2 ) END IF WORK( 1 ) = LWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -15 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGEESX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN SDIM = 0 RETURN END IF * * Get machine constants * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = ZLANGE( 'M', N, N, A, LDA, DUM ) SCALEA = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) * * * Permute the matrix to make it more nearly triangular * (CWorkspace: none) * (RWorkspace: need N) * IBAL = 1 CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) * * Reduce to upper Hessenberg form * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: none) * ITAU = 1 IWRK = N + ITAU CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * IF( WANTVS ) THEN * * Copy Householder vectors to VS * CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS ) * * Generate unitary matrix in VS * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) * (RWorkspace: none) * CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), $ WORK( IWRK ), $ LWORK-IWRK+1, IERR ) END IF * SDIM = 0 * * Perform QR iteration, accumulating Schur vectors in VS if desired * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: none) * IWRK = ITAU CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS, $ WORK( IWRK ), LWORK-IWRK+1, IEVAL ) IF( IEVAL.GT.0 ) $ INFO = IEVAL * * Sort eigenvalues if desired * IF( WANTST .AND. INFO.EQ.0 ) THEN IF( SCALEA ) $ CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR ) DO 10 I = 1, N BWORK( I ) = SELECT( W( I ) ) 10 CONTINUE * * Reorder eigenvalues, transform Schur vectors, and compute * reciprocal condition numbers * (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) * otherwise, need none ) * (RWorkspace: none) * CALL ZTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, $ SDIM, $ RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1, $ ICOND ) IF( .NOT.WANTSN ) $ MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) ) IF( ICOND.EQ.-14 ) THEN * * Not enough complex workspace * INFO = -15 END IF END IF * IF( WANTVS ) THEN * * Undo balancing * (CWorkspace: none) * (RWorkspace: need N) * CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, $ LDVS, $ IERR ) END IF * IF( SCALEA ) THEN * * Undo scaling for the Schur form of A * CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) CALL ZCOPY( N, A, LDA+1, W, 1 ) IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN DUM( 1 ) = RCONDV CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, $ IERR ) RCONDV = DUM( 1 ) END IF END IF * WORK( 1 ) = MAXWRK RETURN * * End of ZGEESX * END