numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgeev.f | 16260B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
*> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGEEV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, * WORK, LWORK, RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBVL, JOBVR * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), * $ W( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the *> eigenvalues and, optionally, the left and/or right eigenvectors. *> *> The right eigenvector v(j) of A satisfies *> A * v(j) = lambda(j) * v(j) *> where lambda(j) is its eigenvalue. *> The left eigenvector u(j) of A satisfies *> u(j)**H * A = lambda(j) * u(j)**H *> where u(j)**H denotes the conjugate transpose of u(j). *> *> The computed eigenvectors are normalized to have Euclidean norm *> equal to 1 and largest component real. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBVL *> \verbatim *> JOBVL is CHARACTER*1 *> = 'N': left eigenvectors of A are not computed; *> = 'V': left eigenvectors of are computed. *> \endverbatim *> *> \param[in] JOBVR *> \verbatim *> JOBVR is CHARACTER*1 *> = 'N': right eigenvectors of A are not computed; *> = 'V': right eigenvectors of A are computed. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the N-by-N matrix A. *> On exit, A has been overwritten. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] W *> \verbatim *> W is COMPLEX*16 array, dimension (N) *> W contains the computed eigenvalues. *> \endverbatim *> *> \param[out] VL *> \verbatim *> VL is COMPLEX*16 array, dimension (LDVL,N) *> If JOBVL = 'V', the left eigenvectors u(j) are stored one *> after another in the columns of VL, in the same order *> as their eigenvalues. *> If JOBVL = 'N', VL is not referenced. *> u(j) = VL(:,j), the j-th column of VL. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the array VL. LDVL >= 1; if *> JOBVL = 'V', LDVL >= N. *> \endverbatim *> *> \param[out] VR *> \verbatim *> VR is COMPLEX*16 array, dimension (LDVR,N) *> If JOBVR = 'V', the right eigenvectors v(j) are stored one *> after another in the columns of VR, in the same order *> as their eigenvalues. *> If JOBVR = 'N', VR is not referenced. *> v(j) = VR(:,j), the j-th column of VR. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the array VR. LDVR >= 1; if *> JOBVR = 'V', LDVR >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,2*N). *> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = i, the QR algorithm failed to compute all the *> eigenvalues, and no eigenvectors have been computed; *> elements i+1:N of W contain eigenvalues which have *> converged. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * * * @precisions fortran z -> c * *> \ingroup geev * * ===================================================================== SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, $ LDVR, $ WORK, LWORK, RWORK, INFO ) implicit none * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDVL, LDVR, LWORK, N * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), $ W( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR CHARACTER SIDE INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU, $ IWRK, K, LWORK_TREVC, MAXWRK, MINWRK, NOUT DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM COMPLEX*16 TMP * .. * .. Local Arrays .. LOGICAL SELECT( 1 ) DOUBLE PRECISION DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD, $ ZHSEQR, $ ZLACPY, ZLASCL, ZSCAL, ZTREVC3, ZUNGHR * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX, ILAENV DOUBLE PRECISION DLAMCH, DZNRM2, ZLANGE EXTERNAL LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, $ ZLANGE * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, CONJG, AIMAG, MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) WANTVL = LSAME( JOBVL, 'V' ) WANTVR = LSAME( JOBVR, 'V' ) IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTVR ) .AND. $ ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN INFO = -8 ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN INFO = -10 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * CWorkspace refers to complex workspace, and RWorkspace to real * workspace. NB refers to the optimal block size for the * immediately following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by ZHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 ) MINWRK = 2*N IF( WANTVL ) THEN MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, $ 'ZUNGHR', $ ' ', N, 1, N, -1 ) ) CALL ZTREVC3( 'L', 'B', SELECT, N, A, LDA, $ VL, LDVL, VR, LDVR, $ N, NOUT, WORK, -1, RWORK, -1, IERR ) LWORK_TREVC = INT( WORK(1) ) MAXWRK = MAX( MAXWRK, N + LWORK_TREVC ) CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL, $ WORK, -1, INFO ) ELSE IF( WANTVR ) THEN MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, $ 'ZUNGHR', $ ' ', N, 1, N, -1 ) ) CALL ZTREVC3( 'R', 'B', SELECT, N, A, LDA, $ VL, LDVL, VR, LDVR, $ N, NOUT, WORK, -1, RWORK, -1, IERR ) LWORK_TREVC = INT( WORK(1) ) MAXWRK = MAX( MAXWRK, N + LWORK_TREVC ) CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR, $ WORK, -1, INFO ) ELSE CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR, $ WORK, -1, INFO ) END IF HSWORK = INT( WORK(1) ) MAXWRK = MAX( MAXWRK, HSWORK, MINWRK ) END IF WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -12 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGEEV ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Get machine constants * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = ZLANGE( 'M', N, N, A, LDA, DUM ) SCALEA = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) $ CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) * * Balance the matrix * (CWorkspace: none) * (RWorkspace: need N) * IBAL = 1 CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) * * Reduce to upper Hessenberg form * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: none) * ITAU = 1 IWRK = ITAU + N CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * IF( WANTVL ) THEN * * Want left eigenvectors * Copy Householder vectors to VL * SIDE = 'L' CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL ) * * Generate unitary matrix in VL * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) * (RWorkspace: none) * CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), $ WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VL * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: none) * IWRK = ITAU CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * IF( WANTVR ) THEN * * Want left and right eigenvectors * Copy Schur vectors to VR * SIDE = 'B' CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR ) END IF * ELSE IF( WANTVR ) THEN * * Want right eigenvectors * Copy Householder vectors to VR * SIDE = 'R' CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR ) * * Generate unitary matrix in VR * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) * (RWorkspace: none) * CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), $ WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * * Perform QR iteration, accumulating Schur vectors in VR * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: none) * IWRK = ITAU CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) * ELSE * * Compute eigenvalues only * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: none) * IWRK = ITAU CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR, $ WORK( IWRK ), LWORK-IWRK+1, INFO ) END IF * * If INFO .NE. 0 from ZHSEQR, then quit * IF( INFO.NE.0 ) $ GO TO 50 * IF( WANTVL .OR. WANTVR ) THEN * * Compute left and/or right eigenvectors * (CWorkspace: need 2*N, prefer N + 2*N*NB) * (RWorkspace: need 2*N) * IRWORK = IBAL + N CALL ZTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, $ LDVR, $ N, NOUT, WORK( IWRK ), LWORK-IWRK+1, $ RWORK( IRWORK ), N, IERR ) END IF * IF( WANTVL ) THEN * * Undo balancing of left eigenvectors * (CWorkspace: none) * (RWorkspace: need N) * CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, $ LDVL, $ IERR ) * * Normalize left eigenvectors and make largest component real * DO 20 I = 1, N SCL = ONE / DZNRM2( N, VL( 1, I ), 1 ) CALL ZDSCAL( N, SCL, VL( 1, I ), 1 ) DO 10 K = 1, N RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 + $ AIMAG( VL( K, I ) )**2 10 CONTINUE K = IDAMAX( N, RWORK( IRWORK ), 1 ) TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) ) CALL ZSCAL( N, TMP, VL( 1, I ), 1 ) VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO ) 20 CONTINUE END IF * IF( WANTVR ) THEN * * Undo balancing of right eigenvectors * (CWorkspace: none) * (RWorkspace: need N) * CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, $ LDVR, $ IERR ) * * Normalize right eigenvectors and make largest component real * DO 40 I = 1, N SCL = ONE / DZNRM2( N, VR( 1, I ), 1 ) CALL ZDSCAL( N, SCL, VR( 1, I ), 1 ) DO 30 K = 1, N RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 + $ AIMAG( VR( K, I ) )**2 30 CONTINUE K = IDAMAX( N, RWORK( IRWORK ), 1 ) TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) ) CALL ZSCAL( N, TMP, VR( 1, I ), 1 ) VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO ) 40 CONTINUE END IF * * Undo scaling if necessary * 50 CONTINUE IF( SCALEA ) THEN CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, $ W( INFO+1 ), $ MAX( N-INFO, 1 ), IERR ) IF( INFO.GT.0 ) THEN CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, $ IERR ) END IF END IF * WORK( 1 ) = MAXWRK RETURN * * End of ZGEEV * END