numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgelqt3.f | 7373B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
*> \brief \b ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGELQT3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqt3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqt3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqt3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, M, N, LDT * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), T( LDT, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGELQT3 recursively computes a LQ factorization of a complex M-by-N *> matrix A, using the compact WY representation of Q. *> *> Based on the algorithm of Elmroth and Gustavson, *> IBM J. Res. Develop. Vol 44 No. 4 July 2000. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M =< N. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the complex M-by-N matrix A. On exit, the elements on and *> below the diagonal contain the N-by-N lower triangular matrix L; the *> elements above the diagonal are the rows of V. See below for *> further details. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] T *> \verbatim *> T is COMPLEX*16 array, dimension (LDT,N) *> The N-by-N upper triangular factor of the block reflector. *> The elements on and above the diagonal contain the block *> reflector T; the elements below the diagonal are not used. *> See below for further details. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gelqt3 * *> \par Further Details: * ===================== *> *> \verbatim *> *> The matrix V stores the elementary reflectors H(i) in the i-th row *> above the diagonal. For example, if M=5 and N=3, the matrix V is *> *> V = ( 1 v1 v1 v1 v1 ) *> ( 1 v2 v2 v2 ) *> ( 1 v3 v3 v3 ) *> *> *> where the vi's represent the vectors which define H(i), which are returned *> in the matrix A. The 1's along the diagonal of V are not stored in A. The *> block reflector H is then given by *> *> H = I - V * T * V**T *> *> where V**T is the transpose of V. *> *> For details of the algorithm, see Elmroth and Gustavson (cited above). *> \endverbatim *> * ===================================================================== RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N, LDT * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), T( LDT, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO PARAMETER ( ONE = (1.0D+00,0.0D+00) ) PARAMETER ( ZERO = (0.0D+00,0.0D+00)) * .. * .. Local Scalars .. INTEGER I, I1, J, J1, M1, M2, IINFO * .. * .. External Subroutines .. EXTERNAL ZLARFG, ZTRMM, ZGEMM, XERBLA * .. * .. Executable Statements .. * INFO = 0 IF( M .LT. 0 ) THEN INFO = -1 ELSE IF( N .LT. M ) THEN INFO = -2 ELSE IF( LDA .LT. MAX( 1, M ) ) THEN INFO = -4 ELSE IF( LDT .LT. MAX( 1, M ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGELQT3', -INFO ) RETURN END IF * IF( M.EQ.1 ) THEN * * Compute Householder transform when M=1 * CALL ZLARFG( N, A( 1, 1 ), A( 1, MIN( 2, N ) ), LDA, & T( 1, 1 ) ) T(1,1)=CONJG(T(1,1)) * ELSE * * Otherwise, split A into blocks... * M1 = M/2 M2 = M-M1 I1 = MIN( M1+1, M ) J1 = MIN( M+1, N ) * * Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H * CALL ZGELQT3( M1, N, A, LDA, T, LDT, IINFO ) * * Compute A(J1:M,1:N) = A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)] * DO I=1,M2 DO J=1,M1 T( I+M1, J ) = A( I+M1, J ) END DO END DO CALL ZTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE, & A, LDA, T( I1, 1 ), LDT ) * CALL ZGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA, & A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT) * CALL ZTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE, & T, LDT, T( I1, 1 ), LDT ) * CALL ZGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT, & A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA ) * CALL ZTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE, & A, LDA, T( I1, 1 ), LDT ) * DO I=1,M2 DO J=1,M1 A( I+M1, J ) = A( I+M1, J ) - T( I+M1, J ) T( I+M1, J )= ZERO END DO END DO * * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H * CALL ZGELQT3( M2, N-M1, A( I1, I1 ), LDA, & T( I1, I1 ), LDT, IINFO ) * * Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2 * DO I=1,M2 DO J=1,M1 T( J, I+M1 ) = (A( J, I+M1 )) END DO END DO * CALL ZTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE, & A( I1, I1 ), LDA, T( 1, I1 ), LDT ) * CALL ZGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA, & A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT ) * CALL ZTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT, & T( 1, I1 ), LDT ) * CALL ZTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE, & T( I1, I1 ), LDT, T( 1, I1 ), LDT ) * * * * Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3] * [ A(1:N1,J1:N) L2 ] [ 0 T2] * END IF * RETURN * * End of ZGELQT3 * END