numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zgeqp3rk.f 39086B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
*> \brief \b ZGEQP3RK computes a truncated Householder QR factorization with column pivoting of a complex m-by-n matrix A by using Level 3 BLAS and overwrites m-by-nrhs matrix B with Q**H * B.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEQP3RK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqp3rk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqp3rk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqp3rk.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA,
*      $                     K, MAXC2NRMK, RELMAXC2NRMK, JPIV, TAU,
*      $                     WORK, LWORK, RWORK, IWORK, INFO )
*       IMPLICIT NONE
*
*      .. Scalar Arguments ..
*       INTEGER            INFO, K, KMAX, LDA, LWORK, M, N, NRHS
*       DOUBLE PRECISION   ABSTOL, MAXC2NRMK, RELMAXC2NRMK, RELTOL
*      ..
*      .. Array Arguments ..
*       INTEGER            IWORK( * ), JPIV( * )
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*      ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGEQP3RK performs two tasks simultaneously:
*>
*> Task 1: The routine computes a truncated (rank K) or full rank
*> Householder QR factorization with column pivoting of a complex
*> M-by-N matrix A using Level 3 BLAS. K is the number of columns
*> that were factorized, i.e. factorization rank of the
*> factor R, K <= min(M,N).
*>
*>  A * P(K) = Q(K) * R(K)  =
*>
*>        = Q(K) * ( R11(K) R12(K) ) = Q(K) * (   R(K)_approx    )
*>                 ( 0      R22(K) )          ( 0  R(K)_residual ),
*>
*> where:
*>
*>  P(K)            is an N-by-N permutation matrix;
*>  Q(K)            is an M-by-M unitary matrix;
*>  R(K)_approx   = ( R11(K), R12(K) ) is a rank K approximation of the
*>                    full rank factor R with K-by-K upper-triangular
*>                    R11(K) and K-by-N rectangular R12(K). The diagonal
*>                    entries of R11(K) appear in non-increasing order
*>                    of absolute value, and absolute values of all of
*>                    them exceed the maximum column 2-norm of R22(K)
*>                    up to roundoff error.
*>  R(K)_residual = R22(K) is the residual of a rank K approximation
*>                    of the full rank factor R. It is a
*>                    an (M-K)-by-(N-K) rectangular matrix;
*>  0               is a an (M-K)-by-K zero matrix.
*>
*> Task 2: At the same time, the routine overwrites a complex M-by-NRHS
*> matrix B with  Q(K)**H * B  using Level 3 BLAS.
*>
*> =====================================================================
*>
*> The matrices A and B are stored on input in the array A as
*> the left and right blocks A(1:M,1:N) and A(1:M, N+1:N+NRHS)
*> respectively.
*>
*>                                  N     NRHS
*>             array_A   =   M  [ mat_A, mat_B ]
*>
*> The truncation criteria (i.e. when to stop the factorization)
*> can be any of the following:
*>
*>   1) The input parameter KMAX, the maximum number of columns
*>      KMAX to factorize, i.e. the factorization rank is limited
*>      to KMAX. If KMAX >= min(M,N), the criterion is not used.
*>
*>   2) The input parameter ABSTOL, the absolute tolerance for
*>      the maximum column 2-norm of the residual matrix R22(K). This
*>      means that the factorization stops if this norm is less or
*>      equal to ABSTOL. If ABSTOL < 0.0, the criterion is not used.
*>
*>   3) The input parameter RELTOL, the tolerance for the maximum
*>      column 2-norm matrix of the residual matrix R22(K) divided
*>      by the maximum column 2-norm of the original matrix A, which
*>      is equal to abs(R(1,1)). This means that the factorization stops
*>      when the ratio of the maximum column 2-norm of R22(K) to
*>      the maximum column 2-norm of A is less than or equal to RELTOL.
*>      If RELTOL < 0.0, the criterion is not used.
*>
*>   4) In case both stopping criteria ABSTOL or RELTOL are not used,
*>      and when the residual matrix R22(K) is a zero matrix in some
*>      factorization step K. ( This stopping criterion is implicit. )
*>
*>  The algorithm stops when any of these conditions is first
*>  satisfied, otherwise the whole matrix A is factorized.
*>
*>  To factorize the whole matrix A, use the values
*>  KMAX >= min(M,N), ABSTOL < 0.0 and RELTOL < 0.0.
*>
*>  The routine returns:
*>     a) Q(K), R(K)_approx = ( R11(K), R12(K) ),
*>        R(K)_residual = R22(K), P(K), i.e. the resulting matrices
*>        of the factorization; P(K) is represented by JPIV,
*>        ( if K = min(M,N), R(K)_approx is the full factor R,
*>        and there is no residual matrix R(K)_residual);
*>     b) K, the number of columns that were factorized,
*>        i.e. factorization rank;
*>     c) MAXC2NRMK, the maximum column 2-norm of the residual
*>        matrix R(K)_residual = R22(K),
*>        ( if K = min(M,N), MAXC2NRMK = 0.0 );
*>     d) RELMAXC2NRMK equals MAXC2NRMK divided by MAXC2NRM, the maximum
*>        column 2-norm of the original matrix A, which is equal
*>        to abs(R(1,1)), ( if K = min(M,N), RELMAXC2NRMK = 0.0 );
*>     e) Q(K)**H * B, the matrix B with the unitary
*>        transformation Q(K)**H applied on the left.
*>
*> The N-by-N permutation matrix P(K) is stored in a compact form in
*> the integer array JPIV. For 1 <= j <= N, column j
*> of the matrix A was interchanged with column JPIV(j).
*>
*> The M-by-M unitary matrix Q is represented as a product
*> of elementary Householder reflectors
*>
*>     Q(K) = H(1) *  H(2) * . . . * H(K),
*>
*> where K is the number of columns that were factorized.
*>
*> Each H(j) has the form
*>
*>     H(j) = I - tau * v * v**H,
*>
*> where 1 <= j <= K and
*>   I    is an M-by-M identity matrix,
*>   tau  is a complex scalar,
*>   v    is a complex vector with v(1:j-1) = 0 and v(j) = 1.
*>
*> v(j+1:M) is stored on exit in A(j+1:M,j) and tau in TAU(j).
*>
*> See the Further Details section for more information.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e. the number of
*>          columns of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] KMAX
*> \verbatim
*>          KMAX is INTEGER
*>
*>          The first factorization stopping criterion. KMAX >= 0.
*>
*>          The maximum number of columns of the matrix A to factorize,
*>          i.e. the maximum factorization rank.
*>
*>          a) If KMAX >= min(M,N), then this stopping criterion
*>                is not used, the routine factorizes columns
*>                depending on ABSTOL and RELTOL.
*>
*>          b) If KMAX = 0, then this stopping criterion is
*>                satisfied on input and the routine exits immediately.
*>                This means that the factorization is not performed,
*>                the matrices A and B are not modified, and
*>                the matrix A is itself the residual.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*>          ABSTOL is DOUBLE PRECISION
*>
*>          The second factorization stopping criterion, cannot be NaN.
*>
*>          The absolute tolerance (stopping threshold) for
*>          maximum column 2-norm of the residual matrix R22(K).
*>          The algorithm converges (stops the factorization) when
*>          the maximum column 2-norm of the residual matrix R22(K)
*>          is less than or equal to ABSTOL. Let SAFMIN = DLAMCH('S').
*>
*>          a) If ABSTOL is NaN, then no computation is performed
*>                and an error message ( INFO = -5 ) is issued
*>                by XERBLA.
*>
*>          b) If ABSTOL < 0.0, then this stopping criterion is not
*>                used, the routine factorizes columns depending
*>                on KMAX and RELTOL.
*>                This includes the case ABSTOL = -Inf.
*>
*>          c) If 0.0 <= ABSTOL < 2*SAFMIN, then ABSTOL = 2*SAFMIN
*>                is used. This includes the case ABSTOL = -0.0.
*>
*>          d) If 2*SAFMIN <= ABSTOL then the input value
*>                of ABSTOL is used.
*>
*>          Let MAXC2NRM be the maximum column 2-norm of the
*>          whole original matrix A.
*>          If ABSTOL chosen above is >= MAXC2NRM, then this
*>          stopping criterion is satisfied on input and routine exits
*>          immediately after MAXC2NRM is computed. The routine
*>          returns MAXC2NRM in MAXC2NORMK,
*>          and 1.0 in RELMAXC2NORMK.
*>          This includes the case ABSTOL = +Inf. This means that the
*>          factorization is not performed, the matrices A and B are not
*>          modified, and the matrix A is itself the residual.
*> \endverbatim
*>
*> \param[in] RELTOL
*> \verbatim
*>          RELTOL is DOUBLE PRECISION
*>
*>          The third factorization stopping criterion, cannot be NaN.
*>
*>          The tolerance (stopping threshold) for the ratio
*>          abs(R(K+1,K+1))/abs(R(1,1)) of the maximum column 2-norm of
*>          the residual matrix R22(K) to the maximum column 2-norm of
*>          the original matrix A. The algorithm converges (stops the
*>          factorization), when abs(R(K+1,K+1))/abs(R(1,1)) A is less
*>          than or equal to RELTOL. Let EPS = DLAMCH('E').
*>
*>          a) If RELTOL is NaN, then no computation is performed
*>                and an error message ( INFO = -6 ) is issued
*>                by XERBLA.
*>
*>          b) If RELTOL < 0.0, then this stopping criterion is not
*>                used, the routine factorizes columns depending
*>                on KMAX and ABSTOL.
*>                This includes the case RELTOL = -Inf.
*>
*>          c) If 0.0 <= RELTOL < EPS, then RELTOL = EPS is used.
*>                This includes the case RELTOL = -0.0.
*>
*>          d) If EPS <= RELTOL then the input value of RELTOL
*>                is used.
*>
*>          Let MAXC2NRM be the maximum column 2-norm of the
*>          whole original matrix A.
*>          If RELTOL chosen above is >= 1.0, then this stopping
*>          criterion is satisfied on input and routine exits
*>          immediately after MAXC2NRM is computed.
*>          The routine returns MAXC2NRM in MAXC2NORMK,
*>          and 1.0 in RELMAXC2NORMK.
*>          This includes the case RELTOL = +Inf. This means that the
*>          factorization is not performed, the matrices A and B are not
*>          modified, and the matrix A is itself the residual.
*>
*>          NOTE: We recommend that RELTOL satisfy
*>                min( 10*max(M,N)*EPS, sqrt(EPS) ) <= RELTOL
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N+NRHS)
*>
*>          On entry:
*>
*>          a) The subarray A(1:M,1:N) contains the M-by-N matrix A.
*>          b) The subarray A(1:M,N+1:N+NRHS) contains the M-by-NRHS
*>             matrix B.
*>
*>                                  N     NRHS
*>              array_A   =   M  [ mat_A, mat_B ]
*>
*>          On exit:
*>
*>          a) The subarray A(1:M,1:N) contains parts of the factors
*>             of the matrix A:
*>
*>            1) If K = 0, A(1:M,1:N) contains the original matrix A.
*>            2) If K > 0, A(1:M,1:N) contains parts of the
*>            factors:
*>
*>              1. The elements below the diagonal of the subarray
*>                 A(1:M,1:K) together with TAU(1:K) represent the
*>                 unitary matrix Q(K) as a product of K Householder
*>                 elementary reflectors.
*>
*>              2. The elements on and above the diagonal of
*>                 the subarray A(1:K,1:N) contain K-by-N
*>                 upper-trapezoidal matrix
*>                 R(K)_approx = ( R11(K), R12(K) ).
*>                 NOTE: If K=min(M,N), i.e. full rank factorization,
*>                       then R_approx(K) is the full factor R which
*>                       is upper-trapezoidal. If, in addition, M>=N,
*>                       then R is upper-triangular.
*>
*>              3. The subarray A(K+1:M,K+1:N) contains (M-K)-by-(N-K)
*>                 rectangular matrix R(K)_residual = R22(K).
*>
*>          b) If NRHS > 0, the subarray A(1:M,N+1:N+NRHS) contains
*>             the M-by-NRHS product Q(K)**H * B.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,M).
*>          This is the leading dimension for both matrices, A and B.
*> \endverbatim
*>
*> \param[out] K
*> \verbatim
*>          K is INTEGER
*>          Factorization rank of the matrix A, i.e. the rank of
*>          the factor R, which is the same as the number of non-zero
*>          rows of the factor R. 0 <= K <= min(M,KMAX,N).
*>
*>          K also represents the number of non-zero Householder
*>          vectors.
*>
*>          NOTE: If K = 0, a) the arrays A and B are not modified;
*>                          b) the array TAU(1:min(M,N)) is set to ZERO,
*>                             if the matrix A does not contain NaN,
*>                             otherwise the elements TAU(1:min(M,N))
*>                             are undefined;
*>                          c) the elements of the array JPIV are set
*>                             as follows: for j = 1:N, JPIV(j) = j.
*> \endverbatim
*>
*> \param[out] MAXC2NRMK
*> \verbatim
*>          MAXC2NRMK is DOUBLE PRECISION
*>          The maximum column 2-norm of the residual matrix R22(K),
*>          when the factorization stopped at rank K. MAXC2NRMK >= 0.
*>
*>          a) If K = 0, i.e. the factorization was not performed,
*>             the matrix A was not modified and is itself a residual
*>             matrix, then MAXC2NRMK equals the maximum column 2-norm
*>             of the original matrix A.
*>
*>          b) If 0 < K < min(M,N), then MAXC2NRMK is returned.
*>
*>          c) If K = min(M,N), i.e. the whole matrix A was
*>             factorized and there is no residual matrix,
*>             then MAXC2NRMK = 0.0.
*>
*>          NOTE: MAXC2NRMK in the factorization step K would equal
*>                R(K+1,K+1) in the next factorization step K+1.
*> \endverbatim
*>
*> \param[out] RELMAXC2NRMK
*> \verbatim
*>          RELMAXC2NRMK is DOUBLE PRECISION
*>          The ratio MAXC2NRMK / MAXC2NRM of the maximum column
*>          2-norm of the residual matrix R22(K) (when the factorization
*>          stopped at rank K) to the maximum column 2-norm of the
*>          whole original matrix A. RELMAXC2NRMK >= 0.
*>
*>          a) If K = 0, i.e. the factorization was not performed,
*>             the matrix A was not modified and is itself a residual
*>             matrix, then RELMAXC2NRMK = 1.0.
*>
*>          b) If 0 < K < min(M,N), then
*>                RELMAXC2NRMK = MAXC2NRMK / MAXC2NRM is returned.
*>
*>          c) If K = min(M,N), i.e. the whole matrix A was
*>             factorized and there is no residual matrix,
*>             then RELMAXC2NRMK = 0.0.
*>
*>         NOTE: RELMAXC2NRMK in the factorization step K would equal
*>               abs(R(K+1,K+1))/abs(R(1,1)) in the next factorization
*>               step K+1.
*> \endverbatim
*>
*> \param[out] JPIV
*> \verbatim
*>          JPIV is INTEGER array, dimension (N)
*>          Column pivot indices. For 1 <= j <= N, column j
*>          of the matrix A was interchanged with column JPIV(j).
*>
*>          The elements of the array JPIV(1:N) are always set
*>          by the routine, for example, even  when no columns
*>          were factorized, i.e. when K = 0, the elements are
*>          set as JPIV(j) = j for j = 1:N.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors.
*>
*>          If 0 < K <= min(M,N), only the elements TAU(1:K) of
*>          the array TAU are modified by the factorization.
*>          After the factorization computed, if no NaN was found
*>          during the factorization, the remaining elements
*>          TAU(K+1:min(M,N)) are set to zero, otherwise the
*>          elements TAU(K+1:min(M,N)) are not set and therefore
*>          undefined.
*>          ( If K = 0, all elements of TAU are set to zero, if
*>          the matrix A does not contain NaN. )
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>          LWORK >= 1, if MIN(M,N) = 0, and
*>          LWORK >= N+NRHS-1, otherwise.
*>          For optimal performance LWORK >= NB*( N+NRHS+1 ),
*>          where NB is the optimal block size for ZGEQP3RK returned
*>          by ILAENV. Minimal block size MINNB=2.
*>
*>          NOTE: The decision, whether to use unblocked BLAS 2
*>          or blocked BLAS 3 code is based not only on the dimension
*>          LWORK of the availbale workspace WORK, but also also on the
*>          matrix A dimension N via crossover point NX returned
*>          by ILAENV. (For N less than NX, unblocked code should be
*>          used.)
*>
*>          If LWORK = -1, then a workspace query is assumed;
*>          the routine only calculates the optimal size of the WORK
*>          array, returns this value as the first entry of the WORK
*>          array, and no error message related to LWORK is issued
*>          by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N-1).
*>          Is a work array. ( IWORK is used to store indices
*>          of "bad" columns for norm downdating in the residual
*>          matrix in the blocked step auxiliary subroutine ZLAQP3RK ).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          1) INFO = 0: successful exit.
*>          2) INFO < 0: if INFO = -i, the i-th argument had an
*>                       illegal value.
*>          3) If INFO = j_1, where 1 <= j_1 <= N, then NaN was
*>             detected and the routine stops the computation.
*>             The j_1-th column of the matrix A or the j_1-th
*>             element of array TAU contains the first occurrence
*>             of NaN in the factorization step K+1 ( when K columns
*>             have been factorized ).
*>
*>             On exit:
*>             K                  is set to the number of
*>                                   factorized columns without
*>                                   exception.
*>             MAXC2NRMK          is set to NaN.
*>             RELMAXC2NRMK       is set to NaN.
*>             TAU(K+1:min(M,N))  is not set and contains undefined
*>                                   elements. If j_1=K+1, TAU(K+1)
*>                                   may contain NaN.
*>          4) If INFO = j_2, where N+1 <= j_2 <= 2*N, then no NaN
*>             was detected, but +Inf (or -Inf) was detected and
*>             the routine continues the computation until completion.
*>             The (j_2-N)-th column of the matrix A contains the first
*>             occurrence of +Inf (or -Inf) in the factorization
*>             step K+1 ( when K columns have been factorized ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup geqp3rk
*
*> \par Further Details:
*  =====================
*
*> \verbatim
*> ZGEQP3RK is based on the same BLAS3 Householder QR factorization
*> algorithm with column pivoting as in ZGEQP3 routine which uses
*> ZLARFG routine to generate Householder reflectors
*> for QR factorization.
*>
*> We can also write:
*>
*>   A = A_approx(K) + A_residual(K)
*>
*> The low rank approximation matrix A(K)_approx from
*> the truncated QR factorization of rank K of the matrix A is:
*>
*>   A(K)_approx = Q(K) * ( R(K)_approx ) * P(K)**T
*>                        (     0     0 )
*>
*>               = Q(K) * ( R11(K) R12(K) ) * P(K)**T
*>                        (      0      0 )
*>
*> The residual A_residual(K) of the matrix A is:
*>
*>   A_residual(K) = Q(K) * ( 0              0 ) * P(K)**T =
*>                          ( 0  R(K)_residual )
*>
*>                 = Q(K) * ( 0        0 ) * P(K)**T
*>                          ( 0   R22(K) )
*>
*> The truncated (rank K) factorization guarantees that
*> the maximum column 2-norm of A_residual(K) is less than
*> or equal to MAXC2NRMK up to roundoff error.
*>
*> NOTE: An approximation of the null vectors
*>       of A can be easily computed from R11(K)
*>       and R12(K):
*>
*>       Null( A(K) )_approx = P * ( inv(R11(K)) * R12(K) )
*>                                 (         -I           )
*>
*> \endverbatim
*
*> \par References:
*  ================
*> [1] A Level 3 BLAS QR factorization algorithm with column pivoting developed in 1996.
*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain.
*> X. Sun, Computer Science Dept., Duke University, USA.
*> C. H. Bischof, Math. and Comp. Sci. Div., Argonne National Lab, USA.
*> A BLAS-3 version of the QR factorization with column pivoting.
*> LAPACK Working Note 114
*> \htmlonly
*> <a href="https://www.netlib.org/lapack/lawnspdf/lawn114.pdf">https://www.netlib.org/lapack/lawnspdf/lawn114.pdf</a>
*> \endhtmlonly
*> and in
*> SIAM J. Sci. Comput., 19(5):1486-1494, Sept. 1998.
*> \htmlonly
*> <a href="https://doi.org/10.1137/S1064827595296732">https://doi.org/10.1137/S1064827595296732</a>
*> \endhtmlonly
*>
*> [2] A partial column norm updating strategy developed in 2006.
*> Z. Drmac and Z. Bujanovic, Dept. of Math., University of Zagreb, Croatia.
*> On the failure of rank revealing QR factorization software – a case study.
*> LAPACK Working Note 176.
*> \htmlonly
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">http://www.netlib.org/lapack/lawnspdf/lawn176.pdf</a>
*> \endhtmlonly
*> and in
*> ACM Trans. Math. Softw. 35, 2, Article 12 (July 2008), 28 pages.
*> \htmlonly
*> <a href="https://doi.org/10.1145/1377612.1377616">https://doi.org/10.1145/1377612.1377616</a>
*> \endhtmlonly
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  November  2023, Igor Kozachenko, James Demmel,
*>                  EECS Department,
*>                  University of California, Berkeley, USA.
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE ZGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA,
     $                     K, MAXC2NRMK, RELMAXC2NRMK, JPIV, TAU,
     $                     WORK, LWORK, RWORK, IWORK, INFO )
      IMPLICIT NONE
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, KF, KMAX, LDA, LWORK, M, N, NRHS
      DOUBLE PRECISION   ABSTOL,  MAXC2NRMK, RELMAXC2NRMK, RELTOL
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), JPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            INB, INBMIN, IXOVER
      PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, DONE
      INTEGER            IINFO, IOFFSET, IWS, J, JB, JBF, JMAXB, JMAX,
     $                   JMAXC2NRM, KP1, LWKOPT, MINMN, N_SUB, NB,
     $                   NBMIN, NX
      DOUBLE PRECISION   EPS, HUGEVAL, MAXC2NRM, SAFMIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLAQP2RK, ZLAQP3RK, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            DISNAN
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DZNRM2
      EXTERNAL           DISNAN, DLAMCH, DZNRM2, IDAMAX, ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*     ====================
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( KMAX.LT.0 ) THEN
         INFO = -4
      ELSE IF( DISNAN( ABSTOL ) ) THEN
         INFO = -5
      ELSE IF( DISNAN( RELTOL ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -8
      END IF
*
*     If the input parameters M, N, NRHS, KMAX, LDA are valid:
*       a) Test the input workspace size LWORK for the minimum
*          size requirement IWS.
*       b) Determine the optimal block size NB and optimal
*          workspace size LWKOPT to be returned in WORK(1)
*          in case of (1) LWORK < IWS, (2) LQUERY = .TRUE.,
*          (3) when routine exits.
*     Here, IWS is the miminum workspace required for unblocked
*     code.
*
      IF( INFO.EQ.0 ) THEN
         MINMN = MIN( M, N )
         IF( MINMN.EQ.0 ) THEN
            IWS = 1
            LWKOPT = 1
         ELSE
*
*           Minimal workspace size in case of using only unblocked
*           BLAS 2 code in ZLAQP2RK.
*           1) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used
*              in ZLARF1F subroutine inside ZLAQP2RK to apply an
*              elementary reflector from the left.
*           TOTAL_WORK_SIZE = 3*N + NRHS - 1
*
            IWS = N + NRHS - 1
*
*           Assign to NB optimal block size.
*
            NB = ILAENV( INB, 'ZGEQP3RK', ' ', M, N, -1, -1 )
*
*           A formula for the optimal workspace size in case of using
*           both unblocked BLAS 2 in ZLAQP2RK and blocked BLAS 3 code
*           in ZLAQP3RK.
*           1) ZGEQP3RK, ZLAQP2RK, ZLAQP3RK: 2*N to store full and
*              partial column 2-norms.
*           2) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used
*              in ZLARF1F subroutine to apply an elementary reflector
*              from the left.
*           3) ZLAQP3RK: NB*(N+NRHS) to use in the work array F that
*              is used to apply a block reflector from
*              the left.
*           4) ZLAQP3RK: NB to use in the auxilixary array AUX.
*           Sizes (2) and ((3) + (4)) should intersect, therefore
*           TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2.
*
            LWKOPT = 2*N + NB*( N+NRHS+1 )
         END IF
         WORK( 1 ) = DCMPLX( LWKOPT )
*
         IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
            INFO = -15
         END IF
      END IF
*
*      NOTE: The optimal workspace size is returned in WORK(1), if
*            the input parameters M, N, NRHS, KMAX, LDA are valid.
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGEQP3RK', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible for M=0 or N=0.
*
      IF( MINMN.EQ.0 ) THEN
         K = 0
         MAXC2NRMK = ZERO
         RELMAXC2NRMK = ZERO
         WORK( 1 ) = DCMPLX( LWKOPT )
         RETURN
      END IF
*
*     ==================================================================
*
*     Initialize column pivot array JPIV.
*
      DO J = 1, N
         JPIV( J ) = J
      END DO
*
*     ==================================================================
*
*     Initialize storage for partial and exact column 2-norms.
*     a) The elements WORK(1:N) are used to store partial column
*        2-norms of the matrix A, and may decrease in each computation
*        step; initialize to the values of complete columns 2-norms.
*     b) The elements WORK(N+1:2*N) are used to store complete column
*        2-norms of the matrix A, they are not changed during the
*        computation; initialize the values of complete columns 2-norms.
*
      DO J = 1, N
         RWORK( J ) = DZNRM2( M, A( 1, J ), 1 )
         RWORK( N+J ) = RWORK( J )
      END DO
*
*     ==================================================================
*
*     Compute the pivot column index and the maximum column 2-norm
*     for the whole original matrix stored in A(1:M,1:N).
*
      KP1 = IDAMAX( N, RWORK( 1 ), 1 )
*
*     ==================================================================.
*
      IF( DISNAN( MAXC2NRM ) ) THEN
*
*        Check if the matrix A contains NaN, set INFO parameter
*        to the column number where the first NaN is found and return
*        from the routine.
*
         K = 0
         INFO = KP1
*
*        Set MAXC2NRMK and  RELMAXC2NRMK to NaN.
*
         MAXC2NRMK = MAXC2NRM
         RELMAXC2NRMK = MAXC2NRM
*
*        Array TAU is not set and contains undefined elements.
*
         WORK( 1 ) = DCMPLX( LWKOPT )
         RETURN
      END IF
*
*     ===================================================================
*
      IF( MAXC2NRM.EQ.ZERO ) THEN
*
*        Check is the matrix A is a zero matrix, set array TAU and
*        return from the routine.
*
         K = 0
         MAXC2NRMK = ZERO
         RELMAXC2NRMK = ZERO
*
         DO J = 1, MINMN
            TAU( J ) = CZERO
         END DO
*
         WORK( 1 ) = DCMPLX( LWKOPT )
         RETURN
*
      END IF
*
*     ===================================================================
*
      HUGEVAL = DLAMCH( 'Overflow' )
*
      IF( MAXC2NRM.GT.HUGEVAL ) THEN
*
*        Check if the matrix A contains +Inf or -Inf, set INFO parameter
*        to the column number, where the first +/-Inf  is found plus N,
*        and continue the computation.
*
         INFO = N + KP1
*
      END IF
*
*     ==================================================================
*
*     Quick return if possible for the case when the first
*     stopping criterion is satisfied, i.e. KMAX = 0.
*
      IF( KMAX.EQ.0 ) THEN
         K = 0
         MAXC2NRMK = MAXC2NRM
         RELMAXC2NRMK = ONE
         DO J = 1, MINMN
            TAU( J ) = CZERO
         END DO
         WORK( 1 ) = DCMPLX( LWKOPT )
         RETURN
      END IF
*
*     ==================================================================
*
      EPS = DLAMCH('Epsilon')
*
*     Adjust ABSTOL
*
      IF( ABSTOL.GE.ZERO ) THEN
         SAFMIN = DLAMCH('Safe minimum')
         ABSTOL = MAX( ABSTOL, TWO*SAFMIN )
      END IF
*
*     Adjust RELTOL
*
      IF( RELTOL.GE.ZERO ) THEN
         RELTOL = MAX( RELTOL, EPS )
      END IF
*
*     ===================================================================
*
*     JMAX is the maximum index of the column to be factorized,
*     which is also limited by the first stopping criterion KMAX.
*
      JMAX = MIN( KMAX, MINMN )
*
*     ===================================================================
*
*     Quick return if possible for the case when the second or third
*     stopping criterion for the whole original matrix is satified,
*     i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL
*     (which is ONE <= RELTOL).
*
      IF( MAXC2NRM.LE.ABSTOL .OR. ONE.LE.RELTOL ) THEN
*
         K = 0
         MAXC2NRMK = MAXC2NRM
         RELMAXC2NRMK = ONE
*
         DO J = 1, MINMN
            TAU( J ) = CZERO
         END DO
*
         WORK( 1 ) = DCMPLX( LWKOPT )
         RETURN
      END IF
*
*     ==================================================================
*     Factorize columns
*     ==================================================================
*
*     Determine the block size.
*
      NBMIN = 2
      NX = 0
*
      IF( ( NB.GT.1 ) .AND. ( NB.LT.MINMN ) ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*        (for N less than NX, unblocked code should be used).
*
         NX = MAX( 0, ILAENV( IXOVER, 'ZGEQP3RK', ' ', M, N, -1,
     $                        -1 ) )
*
         IF( NX.LT.MINMN ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            IF( LWORK.LT.LWKOPT ) THEN
*
*              Not enough workspace to use optimal block size that
*              is currently stored in NB.
*              Reduce NB and determine the minimum value of NB.
*
               NB = ( LWORK-2*N ) / ( N+1 )
               NBMIN = MAX( 2, ILAENV( INBMIN, 'ZGEQP3RK', ' ', M, N,
     $                 -1, -1 ) )
*
            END IF
         END IF
      END IF
*
*     ==================================================================
*
*     DONE is the boolean flag to rerpresent the case when the
*     factorization completed in the block factorization routine,
*     before the end of the block.
*
      DONE = .FALSE.
*
*     J is the column index.
*
      J = 1
*
*     (1) Use blocked code initially.
*
*     JMAXB is the maximum column index of the block, when the
*     blocked code is used, is also limited by the first stopping
*     criterion KMAX.
*
      JMAXB = MIN( KMAX, MINMN - NX )
*
      IF( NB.GE.NBMIN .AND. NB.LT.JMAX .AND. JMAXB.GT.0 ) THEN
*
*        Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here:
*        J   is the column index of a column block;
*        JB  is the column block size to pass to block factorization
*            routine in a loop step;
*        JBF is the number of columns that were actually factorized
*            that was returned by the block factorization routine
*            in a loop step, JBF <= JB;
*        N_SUB is the number of columns in the submatrix;
*        IOFFSET is the number of rows that should not be factorized.
*
         DO WHILE( J.LE.JMAXB )
*
            JB = MIN( NB, JMAXB-J+1 )
            N_SUB = N-J+1
            IOFFSET = J-1
*
*           Factorize JB columns among the columns A(J:N).
*
            CALL ZLAQP3RK( M, N_SUB, NRHS, IOFFSET, JB, ABSTOL,
     $                     RELTOL, KP1, MAXC2NRM, A( 1, J ), LDA,
     $                     DONE, JBF, MAXC2NRMK, RELMAXC2NRMK,
     $                     JPIV( J ), TAU( J ),
     $                     RWORK( J ), RWORK( N+J ),
     $                     WORK( 1 ), WORK( JB+1 ),
     $                     N+NRHS-J+1, IWORK, IINFO )
*
*           Set INFO on the first occurence of Inf.
*
            IF( IINFO.GT.N_SUB .AND. INFO.EQ.0 ) THEN
               INFO = 2*IOFFSET + IINFO
            END IF
*
            IF( DONE ) THEN
*
*              Either the submatrix is zero before the end of the
*              column block, or ABSTOL or RELTOL criterion is
*              satisfied before the end of the column block, we can
*              return from the routine. Perform the following before
*              returning:
*                a) Set the number of factorized columns K,
*                   K = IOFFSET + JBF from the last call of blocked
*                   routine.
*                NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned
*                         by the block factorization routine;
*                      2) The remaining TAUs are set to ZERO by the
*                         block factorization routine.
*
               K = IOFFSET + JBF
*
*              Set INFO on the first occurrence of NaN, NaN takes
*              prcedence over Inf.
*
               IF( IINFO.LE.N_SUB .AND. IINFO.GT.0 ) THEN
                  INFO = IOFFSET + IINFO
               END IF
*
*              Return from the routine.
*
               WORK( 1 ) = DCMPLX( LWKOPT )
*
               RETURN
*
            END IF
*
            J = J + JBF
*
         END DO
*
      END IF
*
*     Use unblocked code to factor the last or only block.
*     J = JMAX+1 means we factorized the maximum possible number of
*     columns, that is in ELSE clause we need to compute
*     the MAXC2NORM and RELMAXC2NORM to return after we processed
*     the blocks.
*
      IF( J.LE.JMAX ) THEN
*
*        N_SUB is the number of columns in the submatrix;
*        IOFFSET is the number of rows that should not be factorized.
*
         N_SUB = N-J+1
         IOFFSET = J-1
*
         CALL ZLAQP2RK( M, N_SUB, NRHS, IOFFSET, JMAX-J+1,
     $                  ABSTOL, RELTOL, KP1, MAXC2NRM, A( 1, J ), LDA,
     $                  KF, MAXC2NRMK, RELMAXC2NRMK, JPIV( J ),
     $                  TAU( J ), RWORK( J ), RWORK( N+J ),
     $                  WORK( 1 ), IINFO )
*
*        ABSTOL or RELTOL criterion is satisfied when the number of
*        the factorized columns KF is smaller then the  number
*        of columns JMAX-J+1 supplied to be factorized by the
*        unblocked routine, we can return from
*        the routine. Perform the following before returning:
*           a) Set the number of factorized columns K,
*           b) MAXC2NRMK and RELMAXC2NRMK are returned by the
*              unblocked factorization routine above.
*
         K = J - 1 + KF
*
*        Set INFO on the first exception occurence.
*
*        Set INFO on the first exception occurence of Inf or NaN,
*        (NaN takes precedence over Inf).
*
         IF( IINFO.GT.N_SUB .AND. INFO.EQ.0 ) THEN
            INFO = 2*IOFFSET + IINFO
         ELSE IF( IINFO.LE.N_SUB .AND. IINFO.GT.0 ) THEN
            INFO = IOFFSET + IINFO
         END IF
*
      ELSE
*
*        Compute the return values for blocked code.
*
*        Set the number of factorized columns if the unblocked routine
*        was not called.
*
            K = JMAX
*
*        If there exits a residual matrix after the blocked code:
*           1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the
*              residual matrix, otherwise set them to ZERO;
*           2) Set TAU(K+1:MINMN) to ZERO.
*
         IF( K.LT.MINMN ) THEN
            JMAXC2NRM = K + IDAMAX( N-K, RWORK( K+1 ), 1 )
            MAXC2NRMK = RWORK( JMAXC2NRM )
            IF( K.EQ.0 ) THEN
               RELMAXC2NRMK = ONE
            ELSE
               RELMAXC2NRMK = MAXC2NRMK / MAXC2NRM
            END IF
*
            DO J = K + 1, MINMN
               TAU( J ) = CZERO
            END DO
*
         ELSE
            MAXC2NRMK = ZERO
            RELMAXC2NRMK = ZERO
*
         END IF
*
*     END IF( J.LE.JMAX ) THEN
*
      END IF
*
      WORK( 1 ) = DCMPLX( LWKOPT )
*
      RETURN
*
*     End of ZGEQP3RK
*
      END