numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zgeqrt.f 6092B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
*> \brief \b ZGEQRT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEQRT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER INFO, LDA, LDT, M, N, NB
*       ..
*       .. Array Arguments ..
*       COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
*> using the compact WY representation of Q.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the elements on and above the diagonal of the array
*>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
*>          upper triangular if M >= N); the elements below the diagonal
*>          are the columns of V.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is COMPLEX*16 array, dimension (LDT,MIN(M,N))
*>          The upper triangular block reflectors stored in compact form
*>          as a sequence of upper triangular blocks.  See below
*>          for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= NB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (NB*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup geqrt
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The matrix V stores the elementary reflectors H(i) in the i-th column
*>  below the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*>               V = (  1       )
*>                   ( v1  1    )
*>                   ( v1 v2  1 )
*>                   ( v1 v2 v3 )
*>                   ( v1 v2 v3 )
*>
*>  where the vi's represent the vectors which define H(i), which are returned
*>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
*>
*>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
*>  block is of order NB except for the last block, which is of order
*>  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
*>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
*>  for the last block) T's are stored in the NB-by-K matrix T as
*>
*>               T = (T1 T2 ... TB).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER INFO, LDA, LDT, M, N, NB
*     ..
*     .. Array Arguments ..
      COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
*     ..
*
* =====================================================================
*
*     ..
*     .. Local Scalars ..
      INTEGER    I, IB, IINFO, K
      LOGICAL    USE_RECURSIVE_QR
      PARAMETER( USE_RECURSIVE_QR=.TRUE. )
*     ..
*     .. External Subroutines ..
      EXTERNAL   ZGEQRT2, ZGEQRT3, ZLARFB, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDT.LT.NB ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGEQRT', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      K = MIN( M, N )
      IF( K.EQ.0 ) RETURN
*
*     Blocked loop of length K
*
      DO I = 1, K,  NB
         IB = MIN( K-I+1, NB )
*
*     Compute the QR factorization of the current block A(I:M,I:I+IB-1)
*
         IF( USE_RECURSIVE_QR ) THEN
            CALL ZGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT,
     $                    IINFO )
         ELSE
            CALL ZGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT,
     $                    IINFO )
         END IF
         IF( I+IB.LE.N ) THEN
*
*     Update by applying H**H to A(I:M,I+IB:N) from the left
*
            CALL ZLARFB( 'L', 'C', 'F', 'C', M-I+1, N-I-IB+1, IB,
     $                   A( I, I ), LDA, T( 1, I ), LDT,
     $                   A( I, I+IB ), LDA, WORK , N-I-IB+1 )
         END IF
      END DO
      RETURN
*
*     End of ZGEQRT
*
      END