numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zgesvdq.f 60368B -rw-r--r--
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
*> \brief <b> ZGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGESVDQ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvdq.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvdq.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvdq.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*      SUBROUTINE ZGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
*                          S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
*                          CWORK, LCWORK, RWORK, LRWORK, INFO )
*
*     .. Scalar Arguments ..
*      IMPLICIT    NONE
*      CHARACTER   JOBA, JOBP, JOBR, JOBU, JOBV
*      INTEGER     M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
*                  INFO
*     ..
*     .. Array Arguments ..
*      COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
*      DOUBLE PRECISION S( * ), RWORK( * )
*      INTEGER          IWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZCGESVDQ computes the singular value decomposition (SVD) of a complex
*> M-by-N matrix A, where M >= N. The SVD of A is written as
*>                                    [++]   [xx]   [x0]   [xx]
*>              A = U * SIGMA * V^*,  [++] = [xx] * [ox] * [xx]
*>                                    [++]   [xx]
*> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
*> matrix, and V is an N-by-N unitary matrix. The diagonal elements
*> of SIGMA are the singular values of A. The columns of U and V are the
*> left and the right singular vectors of A, respectively.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBA
*> \verbatim
*>  JOBA is CHARACTER*1
*>  Specifies the level of accuracy in the computed SVD
*>  = 'A' The requested accuracy corresponds to having the backward
*>        error bounded by || delta A ||_F <= f(m,n) * EPS * || A ||_F,
*>        where EPS = DLAMCH('Epsilon'). This authorises ZGESVDQ to
*>        truncate the computed triangular factor in a rank revealing
*>        QR factorization whenever the truncated part is below the
*>        threshold of the order of EPS * ||A||_F. This is aggressive
*>        truncation level.
*>  = 'M' Similarly as with 'A', but the truncation is more gentle: it
*>        is allowed only when there is a drop on the diagonal of the
*>        triangular factor in the QR factorization. This is medium
*>        truncation level.
*>  = 'H' High accuracy requested. No numerical rank determination based
*>        on the rank revealing QR factorization is attempted.
*>  = 'E' Same as 'H', and in addition the condition number of column
*>        scaled A is estimated and returned in  RWORK(1).
*>        N^(-1/4)*RWORK(1) <= ||pinv(A_scaled)||_2 <= N^(1/4)*RWORK(1)
*> \endverbatim
*>
*> \param[in] JOBP
*> \verbatim
*>  JOBP is CHARACTER*1
*>  = 'P' The rows of A are ordered in decreasing order with respect to
*>        ||A(i,:)||_\infty. This enhances numerical accuracy at the cost
*>        of extra data movement. Recommended for numerical robustness.
*>  = 'N' No row pivoting.
*> \endverbatim
*>
*> \param[in] JOBR
*> \verbatim
*>          JOBR is CHARACTER*1
*>          = 'T' After the initial pivoted QR factorization, ZGESVD is applied to
*>          the adjoint R**H of the computed triangular factor R. This involves
*>          some extra data movement (matrix transpositions). Useful for
*>          experiments, research and development.
*>          = 'N' The triangular factor R is given as input to CGESVD. This may be
*>          preferred as it involves less data movement.
*> \endverbatim
*>
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>          = 'A' All M left singular vectors are computed and returned in the
*>          matrix U. See the description of U.
*>          = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
*>          in the matrix U. See the description of U.
*>          = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
*>          vectors are computed and returned in the matrix U.
*>          = 'F' The N left singular vectors are returned in factored form as the
*>          product of the Q factor from the initial QR factorization and the
*>          N left singular vectors of (R**H , 0)**H. If row pivoting is used,
*>          then the necessary information on the row pivoting is stored in
*>          IWORK(N+1:N+M-1).
*>          = 'N' The left singular vectors are not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>          = 'A', 'V' All N right singular vectors are computed and returned in
*>          the matrix V.
*>          = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
*>          vectors are computed and returned in the matrix V. This option is
*>          allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
*>          = 'N' The right singular vectors are not computed.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the input matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the input matrix A.  M >= N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array of dimensions LDA x N
*>          On entry, the input matrix A.
*>          On exit, if JOBU .NE. 'N' or JOBV .NE. 'N', the lower triangle of A contains
*>          the Householder vectors as stored by ZGEQP3. If JOBU = 'F', these Householder
*>          vectors together with CWORK(1:N) can be used to restore the Q factors from
*>          the initial pivoted QR factorization of A. See the description of U.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER.
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is DOUBLE PRECISION array of dimension N.
*>          The singular values of A, ordered so that S(i) >= S(i+1).
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is COMPLEX*16 array, dimension
*>          LDU x M if JOBU = 'A'; see the description of LDU. In this case,
*>          on exit, U contains the M left singular vectors.
*>          LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
*>          case, U contains the leading N or the leading NUMRANK left singular vectors.
*>          LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
*>          contains N x N unitary matrix that can be used to form the left
*>          singular vectors.
*>          If JOBU = 'N', U is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER.
*>          The leading dimension of the array U.
*>          If JOBU = 'A', 'S', 'U', 'R',  LDU >= max(1,M).
*>          If JOBU = 'F',                 LDU >= max(1,N).
*>          Otherwise,                     LDU >= 1.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is COMPLEX*16 array, dimension
*>          LDV x N if JOBV = 'A', 'V', 'R' or if JOBA = 'E' .
*>          If JOBV = 'A', or 'V',  V contains the N-by-N unitary matrix  V**H;
*>          If JOBV = 'R', V contains the first NUMRANK rows of V**H (the right
*>          singular vectors, stored rowwise, of the NUMRANK largest singular values).
*>          If JOBV = 'N' and JOBA = 'E', V is used as a workspace.
*>          If JOBV = 'N', and JOBA.NE.'E', V is not referenced.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V.
*>          If JOBV = 'A', 'V', 'R',  or JOBA = 'E', LDV >= max(1,N).
*>          Otherwise,                               LDV >= 1.
*> \endverbatim
*>
*> \param[out] NUMRANK
*> \verbatim
*>          NUMRANK is INTEGER
*>          NUMRANK is the numerical rank first determined after the rank
*>          revealing QR factorization, following the strategy specified by the
*>          value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
*>          leading singular values and vectors are then requested in the call
*>          of CGESVD. The final value of NUMRANK might be further reduced if
*>          some singular values are computed as zeros.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (max(1, LIWORK)).
*>          On exit, IWORK(1:N) contains column pivoting permutation of the
*>          rank revealing QR factorization.
*>          If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
*>          of row swaps used in row pivoting. These can be used to restore the
*>          left singular vectors in the case JOBU = 'F'.
*>
*>          If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*>          IWORK(1) returns the minimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*>          LIWORK is INTEGER
*>          The dimension of the array IWORK.
*>          LIWORK >= N + M - 1,  if JOBP = 'P';
*>          LIWORK >= N           if JOBP = 'N'.
*>
*>          If LIWORK = -1, then a workspace query is assumed; the routine
*>          only calculates and returns the optimal and minimal sizes
*>          for the CWORK, IWORK, and RWORK arrays, and no error
*>          message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] CWORK
*> \verbatim
*>          CWORK is COMPLEX*12 array, dimension (max(2, LCWORK)), used as a workspace.
*>          On exit, if, on entry, LCWORK.NE.-1, CWORK(1:N) contains parameters
*>          needed to recover the Q factor from the QR factorization computed by
*>          ZGEQP3.
*>
*>          If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*>          CWORK(1) returns the optimal LCWORK, and
*>          CWORK(2) returns the minimal LCWORK.
*> \endverbatim
*>
*> \param[in,out] LCWORK
*> \verbatim
*>          LCWORK is INTEGER
*>          The dimension of the array CWORK. It is determined as follows:
*>          Let  LWQP3 = N+1,  LWCON = 2*N, and let
*>          LWUNQ = { MAX( N, 1 ),  if JOBU = 'R', 'S', or 'U'
*>          { MAX( M, 1 ),  if JOBU = 'A'
*>          LWSVD = MAX( 3*N, 1 )
*>          LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 3*(N/2), 1 ), LWUNLQ = MAX( N, 1 ),
*>          LWQRF = MAX( N/2, 1 ), LWUNQ2 = MAX( N, 1 )
*>          Then the minimal value of LCWORK is:
*>          = MAX( N + LWQP3, LWSVD )        if only the singular values are needed;
*>          = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
*>                                   and a scaled condition estimate requested;
*>
*>          = N + MAX( LWQP3, LWSVD, LWUNQ ) if the singular values and the left
*>                                   singular vectors are requested;
*>          = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the singular values and the left
*>                                   singular vectors are requested, and also
*>                                   a scaled condition estimate requested;
*>
*>          = N + MAX( LWQP3, LWSVD )        if the singular values and the right
*>                                   singular vectors are requested;
*>          = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
*>                                   singular vectors are requested, and also
*>                                   a scaled condition etimate requested;
*>
*>          = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV = 'R';
*>                                   independent of JOBR;
*>          = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the full SVD is requested,
*>                                   JOBV = 'R' and, also a scaled condition
*>                                   estimate requested; independent of JOBR;
*>          = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
*>         N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ) ) if the
*>                         full SVD is requested with JOBV = 'A' or 'V', and
*>                         JOBR ='N'
*>          = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
*>         N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ ) )
*>                         if the full SVD is requested with JOBV = 'A' or 'V', and
*>                         JOBR ='N', and also a scaled condition number estimate
*>                         requested.
*>          = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
*>         N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) if the
*>                         full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
*>          = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
*>         N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) )
*>                         if the full SVD is requested with JOBV = 'A', 'V' and
*>                         JOBR ='T', and also a scaled condition number estimate
*>                         requested.
*>          Finally, LCWORK must be at least two: LCWORK = MAX( 2, LCWORK ).
*>
*>          If LCWORK = -1, then a workspace query is assumed; the routine
*>          only calculates and returns the optimal and minimal sizes
*>          for the CWORK, IWORK, and RWORK arrays, and no error
*>          message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (max(1, LRWORK)).
*>          On exit,
*>          1. If JOBA = 'E', RWORK(1) contains an estimate of the condition
*>          number of column scaled A. If A = C * D where D is diagonal and C
*>          has unit columns in the Euclidean norm, then, assuming full column rank,
*>          N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
*>          Otherwise, RWORK(1) = -1.
*>          2. RWORK(2) contains the number of singular values computed as
*>          exact zeros in ZGESVD applied to the upper triangular or trapezoidal
*>          R (from the initial QR factorization). In case of early exit (no call to
*>          ZGESVD, such as in the case of zero matrix) RWORK(2) = -1.
*>
*>          If LIWORK, LCWORK, or LRWORK = -1, then on exit, if INFO = 0,
*>          RWORK(1) returns the minimal LRWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*>          LRWORK is INTEGER.
*>          The dimension of the array RWORK.
*>          If JOBP ='P', then LRWORK >= MAX(2, M, 5*N);
*>          Otherwise, LRWORK >= MAX(2, 5*N).
*>
*>          If LRWORK = -1, then a workspace query is assumed; the routine
*>          only calculates and returns the optimal and minimal sizes
*>          for the CWORK, IWORK, and RWORK arrays, and no error
*>          message related to LCWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if ZBDSQR did not converge, INFO specifies how many superdiagonals
*>          of an intermediate bidiagonal form B (computed in ZGESVD) did not
*>          converge to zero.
*> \endverbatim
*
*> \par Further Details:
*  ========================
*>
*> \verbatim
*>
*>   1. The data movement (matrix transpose) is coded using simple nested
*>   DO-loops because BLAS and LAPACK do not provide corresponding subroutines.
*>   Those DO-loops are easily identified in this source code - by the CONTINUE
*>   statements labeled with 11**. In an optimized version of this code, the
*>   nested DO loops should be replaced with calls to an optimized subroutine.
*>   2. This code scales A by 1/SQRT(M) if the largest ABS(A(i,j)) could cause
*>   column norm overflow. This is the minial precaution and it is left to the
*>   SVD routine (CGESVD) to do its own preemptive scaling if potential over-
*>   or underflows are detected. To avoid repeated scanning of the array A,
*>   an optimal implementation would do all necessary scaling before calling
*>   CGESVD and the scaling in CGESVD can be switched off.
*>   3. Other comments related to code optimization are given in comments in the
*>   code, enclosed in [[double brackets]].
*> \endverbatim
*
*> \par Bugs, examples and comments
*  ===========================
*
*> \verbatim
*>  Please report all bugs and send interesting examples and/or comments to
*>  drmac@math.hr. Thank you.
*> \endverbatim
*
*> \par References
*  ===============
*
*> \verbatim
*>  [1] Zlatko Drmac, Algorithm 977: A QR-Preconditioned QR SVD Method for
*>      Computing the SVD with High Accuracy. ACM Trans. Math. Softw.
*>      44(1): 11:1-11:30 (2017)
*>
*>  SIGMA library, xGESVDQ section updated February 2016.
*>  Developed and coded by Zlatko Drmac, Department of Mathematics
*>  University of Zagreb, Croatia, drmac@math.hr
*> \endverbatim
*
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*> Developed and coded by Zlatko Drmac, Department of Mathematics
*>  University of Zagreb, Croatia, drmac@math.hr
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gesvdq
*
*  =====================================================================
      SUBROUTINE ZGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
     $                    S, U, LDU, V, LDV, NUMRANK, IWORK, LIWORK,
     $                    CWORK, LCWORK, RWORK, LRWORK, INFO )
*     .. Scalar Arguments ..
      IMPLICIT    NONE
      CHARACTER   JOBA, JOBP, JOBR, JOBU, JOBV
      INTEGER     M, N, LDA, LDU, LDV, NUMRANK, LIWORK, LCWORK, LRWORK,
     $            INFO
*     ..
*     .. Array Arguments ..
      COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( * )
      DOUBLE PRECISION S( * ), RWORK( * )
      INTEGER          IWORK( * )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO,         ONE
      PARAMETER      ( ZERO = 0.0D0, ONE = 1.0D0 )
      COMPLEX*16       CZERO,                 CONE
      PARAMETER      ( CZERO = (0.0D0,0.0D0), CONE = (1.0D0,0.0D0) )
*     ..
*     .. Local Scalars ..
      INTEGER     IERR, NR, N1, OPTRATIO, p, q
      INTEGER     LWCON, LWQP3, LWRK_ZGELQF, LWRK_ZGESVD, LWRK_ZGESVD2,
     $            LWRK_ZGEQP3, LWRK_ZGEQRF, LWRK_ZUNMLQ, LWRK_ZUNMQR,
     $            LWRK_ZUNMQR2, LWLQF, LWQRF, LWSVD, LWSVD2, LWUNQ,
     $            LWUNQ2, LWUNLQ, MINWRK, MINWRK2, OPTWRK, OPTWRK2,
     $            IMINWRK, RMINWRK
      LOGICAL     ACCLA,  ACCLM, ACCLH, ASCALED, CONDA, DNTWU,  DNTWV,
     $            LQUERY, LSVC0, LSVEC, ROWPRM,  RSVEC, RTRANS, WNTUA,
     $            WNTUF,  WNTUR, WNTUS, WNTVA,   WNTVR
      DOUBLE PRECISION BIG, EPSLN, RTMP, SCONDA, SFMIN
      COMPLEX*16       CTMP
*     ..
*     .. Local Arrays
      COMPLEX*16         CDUMMY(1)
      DOUBLE PRECISION   RDUMMY(1)
*     ..
*     .. External Subroutines (BLAS, LAPACK)
      EXTERNAL    ZGELQF, ZGEQP3, ZGEQRF, ZGESVD, ZLACPY,
     $                   ZLAPMT,
     $            ZLASCL, ZLASET, ZLASWP, ZDSCAL, DLASET, DLASCL,
     $            ZPOCON, ZUNMLQ, ZUNMQR, XERBLA
*     ..
*     .. External Functions (BLAS, LAPACK)
      LOGICAL     LSAME
      INTEGER                     IDAMAX
      DOUBLE PRECISION   ZLANGE,          DZNRM2, DLAMCH
      EXTERNAL    LSAME, ZLANGE,  IDAMAX, DZNRM2, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC   ABS, CONJG, MAX, MIN, DBLE, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      WNTUS  = LSAME( JOBU, 'S' ) .OR. LSAME( JOBU, 'U' )
      WNTUR  = LSAME( JOBU, 'R' )
      WNTUA  = LSAME( JOBU, 'A' )
      WNTUF  = LSAME( JOBU, 'F' )
      LSVC0  = WNTUS .OR. WNTUR .OR. WNTUA
      LSVEC  = LSVC0 .OR. WNTUF
      DNTWU  = LSAME( JOBU, 'N' )
*
      WNTVR  = LSAME( JOBV, 'R' )
      WNTVA  = LSAME( JOBV, 'A' ) .OR. LSAME( JOBV, 'V' )
      RSVEC  = WNTVR .OR. WNTVA
      DNTWV  = LSAME( JOBV, 'N' )
*
      ACCLA  = LSAME( JOBA, 'A' )
      ACCLM  = LSAME( JOBA, 'M' )
      CONDA  = LSAME( JOBA, 'E' )
      ACCLH  = LSAME( JOBA, 'H' ) .OR. CONDA
*
      ROWPRM = LSAME( JOBP, 'P' )
      RTRANS = LSAME( JOBR, 'T' )
*
      IF ( ROWPRM ) THEN
         IMINWRK = MAX( 1, N + M - 1 )
         RMINWRK = MAX( 2, M, 5*N )
      ELSE
         IMINWRK = MAX( 1, N )
         RMINWRK = MAX( 2, 5*N )
      END IF
      LQUERY = (LIWORK .EQ. -1 .OR. LCWORK .EQ. -1 .OR. LRWORK .EQ. -1)
      INFO  = 0
      IF ( .NOT. ( ACCLA .OR. ACCLM .OR. ACCLH ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( ROWPRM .OR. LSAME( JOBP, 'N' ) ) ) THEN
          INFO = -2
      ELSE IF ( .NOT.( RTRANS .OR. LSAME( JOBR, 'N' ) ) ) THEN
          INFO = -3
      ELSE IF ( .NOT.( LSVEC .OR. DNTWU ) ) THEN
         INFO = -4
      ELSE IF ( WNTUR .AND. WNTVA ) THEN
         INFO = -5
      ELSE IF ( .NOT.( RSVEC .OR. DNTWV )) THEN
         INFO = -5
      ELSE IF ( M.LT.0 ) THEN
         INFO = -6
      ELSE IF ( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
         INFO = -7
      ELSE IF ( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF ( LDU.LT.1 .OR. ( LSVC0 .AND. LDU.LT.M ) .OR.
     $       ( WNTUF .AND. LDU.LT.N ) ) THEN
         INFO = -12
      ELSE IF ( LDV.LT.1 .OR. ( RSVEC .AND. LDV.LT.N ) .OR.
     $          ( CONDA .AND. LDV.LT.N ) ) THEN
         INFO = -14
      ELSE IF ( LIWORK .LT. IMINWRK .AND. .NOT. LQUERY ) THEN
         INFO = -17
      END IF
*
*
      IF ( INFO .EQ. 0 ) THEN
*        .. compute the minimal and the optimal workspace lengths
*        [[The expressions for computing the minimal and the optimal
*        values of LCWORK are written with a lot of redundancy and
*        can be simplified. However, this detailed form is easier for
*        maintenance and modifications of the code.]]
*
*        .. minimal workspace length for ZGEQP3 of an M x N matrix
         LWQP3 = N+1
*        .. minimal workspace length for ZUNMQR to build left singular vectors
         IF ( WNTUS .OR. WNTUR ) THEN
             LWUNQ  = MAX( N  , 1 )
         ELSE IF ( WNTUA ) THEN
             LWUNQ = MAX( M , 1 )
         END IF
*        .. minimal workspace length for ZPOCON of an N x N matrix
         LWCON = 2 * N
*        .. ZGESVD of an N x N matrix
         LWSVD = MAX( 3 * N, 1 )
         IF ( LQUERY ) THEN
             CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
     $            RDUMMY, IERR )
             LWRK_ZGEQP3 = INT( CDUMMY(1) )
             IF ( WNTUS .OR. WNTUR ) THEN
                 CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
     $                LDU, CDUMMY, -1, IERR )
                 LWRK_ZUNMQR = INT( CDUMMY(1) )
             ELSE IF ( WNTUA ) THEN
                 CALL ZUNMQR( 'L', 'N', M, M, N, A, LDA, CDUMMY, U,
     $                LDU, CDUMMY, -1, IERR )
                 LWRK_ZUNMQR = INT( CDUMMY(1) )
             ELSE
                 LWRK_ZUNMQR = 0
             END IF
         END IF
         MINWRK = 2
         OPTWRK = 2
         IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
*            .. minimal and optimal sizes of the complex workspace if
*            only the singular values are requested
             IF ( CONDA ) THEN
                MINWRK = MAX( N+LWQP3, LWCON, LWSVD )
             ELSE
                MINWRK = MAX( N+LWQP3, LWSVD )
             END IF
             IF ( LQUERY ) THEN
                 CALL ZGESVD( 'N', 'N', N, N, A, LDA, S, U, LDU,
     $                V, LDV, CDUMMY, -1, RDUMMY, IERR )
                 LWRK_ZGESVD = INT( CDUMMY(1) )
                 IF ( CONDA ) THEN
                    OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, LWRK_ZGESVD )
                 ELSE
                    OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVD )
                 END IF
             END IF
         ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN
*            .. minimal and optimal sizes of the complex workspace if the
*            singular values and the left singular vectors are requested
             IF ( CONDA ) THEN
                 MINWRK = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ )
             ELSE
                 MINWRK = N + MAX( LWQP3, LWSVD, LWUNQ )
             END IF
             IF ( LQUERY ) THEN
                IF ( RTRANS ) THEN
                   CALL ZGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
     $                  V, LDV, CDUMMY, -1, RDUMMY, IERR )
                ELSE
                   CALL ZGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
     $                  V, LDV, CDUMMY, -1, RDUMMY, IERR )
                END IF
                LWRK_ZGESVD = INT( CDUMMY(1) )
                IF ( CONDA ) THEN
                    OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, LWRK_ZGESVD,
     $                               LWRK_ZUNMQR )
                ELSE
                    OPTWRK = N + MAX( LWRK_ZGEQP3, LWRK_ZGESVD,
     $                               LWRK_ZUNMQR )
                END IF
             END IF
         ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
*            .. minimal and optimal sizes of the complex workspace if the
*            singular values and the right singular vectors are requested
             IF ( CONDA ) THEN
                 MINWRK = N + MAX( LWQP3, LWCON, LWSVD )
             ELSE
                 MINWRK = N + MAX( LWQP3, LWSVD )
             END IF
             IF ( LQUERY ) THEN
                 IF ( RTRANS ) THEN
                     CALL ZGESVD( 'O', 'N', N, N, A, LDA, S, U, LDU,
     $                    V, LDV, CDUMMY, -1, RDUMMY, IERR )
                 ELSE
                     CALL ZGESVD( 'N', 'O', N, N, A, LDA, S, U, LDU,
     $                    V, LDV, CDUMMY, -1, RDUMMY, IERR )
                 END IF
                 LWRK_ZGESVD = INT( CDUMMY(1) )
                 IF ( CONDA ) THEN
                     OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, LWRK_ZGESVD )
                 ELSE
                     OPTWRK = N + MAX( LWRK_ZGEQP3, LWRK_ZGESVD )
                 END IF
             END IF
         ELSE
*            .. minimal and optimal sizes of the complex workspace if the
*            full SVD is requested
             IF ( RTRANS ) THEN
                 MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
                 IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
                 MINWRK = MINWRK + N
                 IF ( WNTVA ) THEN
*                   .. minimal workspace length for N x N/2 ZGEQRF
                    LWQRF  = MAX( N/2, 1 )
*                   .. minimal workspace length for N/2 x N/2 ZGESVD
                    LWSVD2 = MAX( 3 * (N/2), 1 )
                    LWUNQ2 = MAX( N, 1 )
                    MINWRK2 = MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2,
     $                        N/2+LWUNQ2, LWUNQ )
                    IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
                    MINWRK2 = N + MINWRK2
                    MINWRK = MAX( MINWRK, MINWRK2 )
                 END IF
             ELSE
                 MINWRK = MAX( LWQP3, LWSVD, LWUNQ )
                 IF ( CONDA ) MINWRK = MAX( MINWRK, LWCON )
                 MINWRK = MINWRK + N
                 IF ( WNTVA ) THEN
*                   .. minimal workspace length for N/2 x N ZGELQF
                    LWLQF  = MAX( N/2, 1 )
                    LWSVD2 = MAX( 3 * (N/2), 1 )
                    LWUNLQ = MAX( N , 1 )
                    MINWRK2 = MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2,
     $                        N/2+LWUNLQ, LWUNQ )
                    IF ( CONDA ) MINWRK2 = MAX( MINWRK2, LWCON )
                    MINWRK2 = N + MINWRK2
                    MINWRK = MAX( MINWRK, MINWRK2 )
                 END IF
             END IF
             IF ( LQUERY ) THEN
                IF ( RTRANS ) THEN
                   CALL ZGESVD( 'O', 'A', N, N, A, LDA, S, U, LDU,
     $                  V, LDV, CDUMMY, -1, RDUMMY, IERR )
                   LWRK_ZGESVD = INT( CDUMMY(1) )
                   OPTWRK = MAX(LWRK_ZGEQP3,LWRK_ZGESVD,LWRK_ZUNMQR)
                   IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
                   OPTWRK = N + OPTWRK
                   IF ( WNTVA ) THEN
                       CALL ZGEQRF(N,N/2,U,LDU,CDUMMY,CDUMMY,-1,IERR)
                       LWRK_ZGEQRF = INT( CDUMMY(1) )
                       CALL ZGESVD( 'S', 'O', N/2,N/2, V,LDV, S, U,
     $                              LDU,
     $                      V, LDV, CDUMMY, -1, RDUMMY, IERR )
                       LWRK_ZGESVD2 = INT( CDUMMY(1) )
                       CALL ZUNMQR( 'R', 'C', N, N, N/2, U, LDU,
     $                              CDUMMY,
     $                      V, LDV, CDUMMY, -1, IERR )
                       LWRK_ZUNMQR2 = INT( CDUMMY(1) )
                       OPTWRK2 = MAX( LWRK_ZGEQP3, N/2+LWRK_ZGEQRF,
     $                           N/2+LWRK_ZGESVD2, N/2+LWRK_ZUNMQR2 )
                       IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
                       OPTWRK2 = N + OPTWRK2
                       OPTWRK = MAX( OPTWRK, OPTWRK2 )
                   END IF
                ELSE
                   CALL ZGESVD( 'S', 'O', N, N, A, LDA, S, U, LDU,
     $                  V, LDV, CDUMMY, -1, RDUMMY, IERR )
                   LWRK_ZGESVD = INT( CDUMMY(1) )
                   OPTWRK = MAX(LWRK_ZGEQP3,LWRK_ZGESVD,LWRK_ZUNMQR)
                   IF ( CONDA ) OPTWRK = MAX( OPTWRK, LWCON )
                   OPTWRK = N + OPTWRK
                   IF ( WNTVA ) THEN
                      CALL ZGELQF(N/2,N,U,LDU,CDUMMY,CDUMMY,-1,IERR)
                      LWRK_ZGELQF = INT( CDUMMY(1) )
                      CALL ZGESVD( 'S','O', N/2,N/2, V, LDV, S, U,
     $                             LDU,
     $                     V, LDV, CDUMMY, -1, RDUMMY, IERR )
                      LWRK_ZGESVD2 = INT( CDUMMY(1) )
                      CALL ZUNMLQ( 'R', 'N', N, N, N/2, U, LDU,
     $                             CDUMMY,
     $                     V, LDV, CDUMMY,-1,IERR )
                      LWRK_ZUNMLQ = INT( CDUMMY(1) )
                      OPTWRK2 = MAX( LWRK_ZGEQP3, N/2+LWRK_ZGELQF,
     $                           N/2+LWRK_ZGESVD2, N/2+LWRK_ZUNMLQ )
                       IF ( CONDA ) OPTWRK2 = MAX( OPTWRK2, LWCON )
                       OPTWRK2 = N + OPTWRK2
                       OPTWRK = MAX( OPTWRK, OPTWRK2 )
                   END IF
                END IF
             END IF
         END IF
*
         MINWRK = MAX( 2, MINWRK )
         OPTWRK = MAX( 2, OPTWRK )
         IF ( LCWORK .LT. MINWRK .AND. (.NOT.LQUERY) ) INFO = -19
*
      END IF
*
      IF (INFO .EQ. 0 .AND. LRWORK .LT. RMINWRK .AND. .NOT. LQUERY) THEN
         INFO = -21
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGESVDQ', -INFO )
         RETURN
      ELSE IF ( LQUERY ) THEN
*
*     Return optimal workspace
*
          IWORK(1) = IMINWRK
          CWORK(1) = OPTWRK
          CWORK(2) = MINWRK
          RWORK(1) = RMINWRK
          RETURN
      END IF
*
*     Quick return if the matrix is void.
*
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) THEN
*     .. all output is void.
         RETURN
      END IF
*
      BIG = DLAMCH('O')
      ASCALED = .FALSE.
      IF ( ROWPRM ) THEN
*           .. reordering the rows in decreasing sequence in the
*           ell-infinity norm - this enhances numerical robustness in
*           the case of differently scaled rows.
            DO 1904 p = 1, M
*               RWORK(p) = ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
*               [[ZLANGE will return NaN if an entry of the p-th row is Nan]]
                RWORK(p) = ZLANGE( 'M', 1, N, A(p,1), LDA, RDUMMY )
*               .. check for NaN's and Inf's
                IF ( ( RWORK(p) .NE. RWORK(p) ) .OR.
     $               ( (RWORK(p)*ZERO) .NE. ZERO ) ) THEN
                    INFO = -8
                    CALL XERBLA( 'ZGESVDQ', -INFO )
                    RETURN
                END IF
 1904       CONTINUE
            DO 1952 p = 1, M - 1
            q = IDAMAX( M-p+1, RWORK(p), 1 ) + p - 1
            IWORK(N+p) = q
            IF ( p .NE. q ) THEN
               RTMP     = RWORK(p)
               RWORK(p) = RWORK(q)
               RWORK(q) = RTMP
            END IF
 1952       CONTINUE
*
            IF ( RWORK(1) .EQ. ZERO ) THEN
*              Quick return: A is the M x N zero matrix.
               NUMRANK = 0
               CALL DLASET( 'G', N, 1, ZERO, ZERO, S, N )
               IF ( WNTUS ) CALL ZLASET('G', M, N, CZERO, CONE, U,
     $              LDU)
               IF ( WNTUA ) CALL ZLASET('G', M, M, CZERO, CONE, U,
     $              LDU)
               IF ( WNTVA ) CALL ZLASET('G', N, N, CZERO, CONE, V,
     $              LDV)
               IF ( WNTUF ) THEN
                   CALL ZLASET( 'G', N, 1, CZERO, CZERO, CWORK, N )
                   CALL ZLASET( 'G', M, N, CZERO, CONE, U, LDU )
               END IF
               DO 5001 p = 1, N
                   IWORK(p) = p
 5001          CONTINUE
               IF ( ROWPRM ) THEN
                   DO 5002 p = N + 1, N + M - 1
                       IWORK(p) = p - N
 5002              CONTINUE
               END IF
               IF ( CONDA ) RWORK(1) = -1
               RWORK(2) = -1
               RETURN
            END IF
*
            IF ( RWORK(1) .GT. BIG / SQRT(DBLE(M)) ) THEN
*               .. to prevent overflow in the QR factorization, scale the
*               matrix by 1/sqrt(M) if too large entry detected
                CALL ZLASCL('G',0,0,SQRT(DBLE(M)),ONE, M,N, A,LDA,
     $                       IERR)
                ASCALED = .TRUE.
            END IF
            CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(N+1), 1 )
      END IF
*
*    .. At this stage, preemptive scaling is done only to avoid column
*    norms overflows during the QR factorization. The SVD procedure should
*    have its own scaling to save the singular values from overflows and
*    underflows. That depends on the SVD procedure.
*
      IF ( .NOT.ROWPRM ) THEN
          RTMP = ZLANGE( 'M', M, N, A, LDA, RWORK )
          IF ( ( RTMP .NE. RTMP ) .OR.
     $         ( (RTMP*ZERO) .NE. ZERO ) ) THEN
               INFO = -8
               CALL XERBLA( 'ZGESVDQ', -INFO )
               RETURN
          END IF
          IF ( RTMP .GT. BIG / SQRT(DBLE(M)) ) THEN
*             .. to prevent overflow in the QR factorization, scale the
*             matrix by 1/sqrt(M) if too large entry detected
              CALL ZLASCL('G',0,0, SQRT(DBLE(M)),ONE, M,N, A,LDA,
     $                     IERR)
              ASCALED = .TRUE.
          END IF
      END IF
*
*     .. QR factorization with column pivoting
*
*     A * P = Q * [ R ]
*                 [ 0 ]
*
      DO 1963 p = 1, N
*        .. all columns are free columns
         IWORK(p) = 0
 1963 CONTINUE
      CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LCWORK-N,
     $     RWORK, IERR )
*
*    If the user requested accuracy level allows truncation in the
*    computed upper triangular factor, the matrix R is examined and,
*    if possible, replaced with its leading upper trapezoidal part.
*
      EPSLN = DLAMCH('E')
      SFMIN = DLAMCH('S')
*     SMALL = SFMIN / EPSLN
      NR = N
*
      IF ( ACCLA ) THEN
*
*        Standard absolute error bound suffices. All sigma_i with
*        sigma_i < N*EPS*||A||_F are flushed to zero. This is an
*        aggressive enforcement of lower numerical rank by introducing a
*        backward error of the order of N*EPS*||A||_F.
         NR = 1
         RTMP = SQRT(DBLE(N))*EPSLN
         DO 3001 p = 2, N
            IF ( ABS(A(p,p)) .LT. (RTMP*ABS(A(1,1))) ) GO TO 3002
               NR = NR + 1
 3001    CONTINUE
 3002    CONTINUE
*
      ELSEIF ( ACCLM ) THEN
*        .. similarly as above, only slightly more gentle (less aggressive).
*        Sudden drop on the diagonal of R is used as the criterion for being
*        close-to-rank-deficient. The threshold is set to EPSLN=DLAMCH('E').
*        [[This can be made more flexible by replacing this hard-coded value
*        with a user specified threshold.]] Also, the values that underflow
*        will be truncated.
         NR = 1
         DO 3401 p = 2, N
            IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
     $           ( ABS(A(p,p)) .LT. SFMIN ) ) GO TO 3402
            NR = NR + 1
 3401    CONTINUE
 3402    CONTINUE
*
      ELSE
*        .. RRQR not authorized to determine numerical rank except in the
*        obvious case of zero pivots.
*        .. inspect R for exact zeros on the diagonal;
*        R(i,i)=0 => R(i:N,i:N)=0.
         NR = 1
         DO 3501 p = 2, N
            IF ( ABS(A(p,p)) .EQ. ZERO ) GO TO 3502
            NR = NR + 1
 3501    CONTINUE
 3502    CONTINUE
*
         IF ( CONDA ) THEN
*           Estimate the scaled condition number of A. Use the fact that it is
*           the same as the scaled condition number of R.
*              .. V is used as workspace
               CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
*              Only the leading NR x NR submatrix of the triangular factor
*              is considered. Only if NR=N will this give a reliable error
*              bound. However, even for NR < N, this can be used on an
*              expert level and obtain useful information in the sense of
*              perturbation theory.
               DO 3053 p = 1, NR
                  RTMP = DZNRM2( p, V(1,p), 1 )
                  CALL ZDSCAL( p, ONE/RTMP, V(1,p), 1 )
 3053          CONTINUE
               IF ( .NOT. ( LSVEC .OR. RSVEC ) ) THEN
                   CALL ZPOCON( 'U', NR, V, LDV, ONE, RTMP,
     $                  CWORK, RWORK, IERR )
               ELSE
                   CALL ZPOCON( 'U', NR, V, LDV, ONE, RTMP,
     $                  CWORK(N+1), RWORK, IERR )
               END IF
               SCONDA = ONE / SQRT(RTMP)
*           For NR=N, SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1),
*           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
*           See the reference [1] for more details.
         END IF
*
      ENDIF
*
      IF ( WNTUR ) THEN
          N1 = NR
      ELSE IF ( WNTUS .OR. WNTUF) THEN
          N1 = N
      ELSE IF ( WNTUA ) THEN
          N1 = M
      END IF
*
      IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
*.......................................................................
*        .. only the singular values are requested
*.......................................................................
         IF ( RTRANS ) THEN
*
*         .. compute the singular values of R**H = [A](1:NR,1:N)**H
*           .. set the lower triangle of [A] to [A](1:NR,1:N)**H and
*           the upper triangle of [A] to zero.
            DO 1146 p = 1, MIN( N, NR )
               A(p,p) = CONJG(A(p,p))
               DO 1147 q = p + 1, N
                  A(q,p) = CONJG(A(p,q))
                  IF ( q .LE. NR ) A(p,q) = CZERO
 1147          CONTINUE
 1146       CONTINUE
*
            CALL ZGESVD( 'N', 'N', N, NR, A, LDA, S, U, LDU,
     $           V, LDV, CWORK, LCWORK, RWORK, INFO )
*
         ELSE
*
*           .. compute the singular values of R = [A](1:NR,1:N)
*
            IF ( NR .GT. 1 )
     $          CALL ZLASET( 'L', NR-1,NR-1, CZERO,CZERO, A(2,1),
     $                       LDA )
            CALL ZGESVD( 'N', 'N', NR, N, A, LDA, S, U, LDU,
     $           V, LDV, CWORK, LCWORK, RWORK, INFO )
*
         END IF
*
      ELSE IF ( LSVEC .AND. ( .NOT. RSVEC) ) THEN
*.......................................................................
*       .. the singular values and the left singular vectors requested
*.......................................................................""""""""
         IF ( RTRANS ) THEN
*            .. apply ZGESVD to R**H
*            .. copy R**H into [U] and overwrite [U] with the right singular
*            vectors of R
            DO 1192 p = 1, NR
               DO 1193 q = p, N
                  U(q,p) = CONJG(A(p,q))
 1193          CONTINUE
 1192       CONTINUE
            IF ( NR .GT. 1 )
     $          CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, U(1,2),
     $                       LDU )
*           .. the left singular vectors not computed, the NR right singular
*           vectors overwrite [U](1:NR,1:NR) as conjugate transposed. These
*           will be pre-multiplied by Q to build the left singular vectors of A.
               CALL ZGESVD( 'N', 'O', N, NR, U, LDU, S, U, LDU,
     $              U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
               DO 1119 p = 1, NR
                   U(p,p) = CONJG(U(p,p))
                   DO 1120 q = p + 1, NR
                      CTMP   = CONJG(U(q,p))
                      U(q,p) = CONJG(U(p,q))
                      U(p,q) = CTMP
 1120              CONTINUE
 1119          CONTINUE
*
         ELSE
*            .. apply ZGESVD to R
*            .. copy R into [U] and overwrite [U] with the left singular vectors
             CALL ZLACPY( 'U', NR, N, A, LDA, U, LDU )
             IF ( NR .GT. 1 )
     $         CALL ZLASET( 'L', NR-1, NR-1, CZERO, CZERO, U(2,1),
     $                      LDU )
*            .. the right singular vectors not computed, the NR left singular
*            vectors overwrite [U](1:NR,1:NR)
                CALL ZGESVD( 'O', 'N', NR, N, U, LDU, S, U, LDU,
     $               V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
*               .. now [U](1:NR,1:NR) contains the NR left singular vectors of
*               R. These will be pre-multiplied by Q to build the left singular
*               vectors of A.
         END IF
*
*           .. assemble the left singular vector matrix U of dimensions
*              (M x NR) or (M x N) or (M x M).
         IF ( ( NR .LT. M ) .AND. ( .NOT.WNTUF ) ) THEN
             CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
             IF ( NR .LT. N1 ) THEN
                CALL ZLASET( 'A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),
     $                       LDU )
                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
     $               U(NR+1,NR+1), LDU )
             END IF
         END IF
*
*           The Q matrix from the first QRF is built into the left singular
*           vectors matrix U.
*
         IF ( .NOT.WNTUF )
     $       CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $            LDU, CWORK(N+1), LCWORK-N, IERR )
         IF ( ROWPRM .AND. .NOT.WNTUF )
     $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
*
      ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
*.......................................................................
*       .. the singular values and the right singular vectors requested
*.......................................................................
          IF ( RTRANS ) THEN
*            .. apply ZGESVD to R**H
*            .. copy R**H into V and overwrite V with the left singular vectors
            DO 1165 p = 1, NR
               DO 1166 q = p, N
                  V(q,p) = CONJG(A(p,q))
 1166          CONTINUE
 1165       CONTINUE
            IF ( NR .GT. 1 )
     $          CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2),
     $                       LDV )
*           .. the left singular vectors of R**H overwrite V, the right singular
*           vectors not computed
            IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
               CALL ZGESVD( 'O', 'N', N, NR, V, LDV, S, U, LDU,
     $              U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
               DO 1121 p = 1, NR
                   V(p,p) = CONJG(V(p,p))
                   DO 1122 q = p + 1, NR
                      CTMP   = CONJG(V(q,p))
                      V(q,p) = CONJG(V(p,q))
                      V(p,q) = CTMP
 1122              CONTINUE
 1121          CONTINUE
*
               IF ( NR .LT. N ) THEN
                   DO 1103 p = 1, NR
                      DO 1104 q = NR + 1, N
                          V(p,q) = CONJG(V(q,p))
 1104                 CONTINUE
 1103              CONTINUE
               END IF
               CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
            ELSE
*               .. need all N right singular vectors and NR < N
*               [!] This is simple implementation that augments [V](1:N,1:NR)
*               by padding a zero block. In the case NR << N, a more efficient
*               way is to first use the QR factorization. For more details
*               how to implement this, see the " FULL SVD " branch.
                CALL ZLASET('G', N, N-NR, CZERO, CZERO, V(1,NR+1),
     $                       LDV)
                CALL ZGESVD( 'O', 'N', N, N, V, LDV, S, U, LDU,
     $               U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
                DO 1123 p = 1, N
                   V(p,p) = CONJG(V(p,p))
                   DO 1124 q = p + 1, N
                      CTMP   = CONJG(V(q,p))
                      V(q,p) = CONJG(V(p,q))
                      V(p,q) = CTMP
 1124              CONTINUE
 1123           CONTINUE
                CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
            END IF
*
          ELSE
*            .. aply ZGESVD to R
*            .. copy R into V and overwrite V with the right singular vectors
             CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
             IF ( NR .GT. 1 )
     $         CALL ZLASET( 'L', NR-1, NR-1, CZERO, CZERO, V(2,1),
     $                      LDV )
*            .. the right singular vectors overwrite V, the NR left singular
*            vectors stored in U(1:NR,1:NR)
             IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
                CALL ZGESVD( 'N', 'O', NR, N, V, LDV, S, U, LDU,
     $               V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
                CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
*               .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
             ELSE
*               .. need all N right singular vectors and NR < N
*               [!] This is simple implementation that augments [V](1:NR,1:N)
*               by padding a zero block. In the case NR << N, a more efficient
*               way is to first use the LQ factorization. For more details
*               how to implement this, see the " FULL SVD " branch.
                 CALL ZLASET('G', N-NR, N, CZERO,CZERO, V(NR+1,1),
     $                        LDV)
                 CALL ZGESVD( 'N', 'O', N, N, V, LDV, S, U, LDU,
     $                V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
                 CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
             END IF
*            .. now [V] contains the adjoint of the matrix of the right singular
*            vectors of A.
          END IF
*
      ELSE
*.......................................................................
*       .. FULL SVD requested
*.......................................................................
         IF ( RTRANS ) THEN
*
*            .. apply ZGESVD to R**H [[this option is left for R&D&T]]
*
            IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
*            .. copy R**H into [V] and overwrite [V] with the left singular
*            vectors of R**H
            DO 1168 p = 1, NR
               DO 1169 q = p, N
                  V(q,p) = CONJG(A(p,q))
 1169          CONTINUE
 1168       CONTINUE
            IF ( NR .GT. 1 )
     $          CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2),
     $                       LDV )
*
*           .. the left singular vectors of R**H overwrite [V], the NR right
*           singular vectors of R**H stored in [U](1:NR,1:NR) as conjugate
*           transposed
               CALL ZGESVD( 'O', 'A', N, NR, V, LDV, S, V, LDV,
     $              U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*              .. assemble V
               DO 1115 p = 1, NR
                  V(p,p) = CONJG(V(p,p))
                  DO 1116 q = p + 1, NR
                     CTMP   = CONJG(V(q,p))
                     V(q,p) = CONJG(V(p,q))
                     V(p,q) = CTMP
 1116             CONTINUE
 1115          CONTINUE
               IF ( NR .LT. N ) THEN
                   DO 1101 p = 1, NR
                      DO 1102 q = NR+1, N
                         V(p,q) = CONJG(V(q,p))
 1102                 CONTINUE
 1101              CONTINUE
               END IF
               CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
*
                DO 1117 p = 1, NR
                   U(p,p) = CONJG(U(p,p))
                   DO 1118 q = p + 1, NR
                      CTMP   = CONJG(U(q,p))
                      U(q,p) = CONJG(U(p,q))
                      U(p,q) = CTMP
 1118              CONTINUE
 1117           CONTINUE
*
                IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
                  CALL ZLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1),
     $                         LDU)
                  IF ( NR .LT. N1 ) THEN
                     CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),
     $                            LDU)
                     CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
     $                    U(NR+1,NR+1), LDU )
                  END IF
               END IF
*
            ELSE
*               .. need all N right singular vectors and NR < N
*            .. copy R**H into [V] and overwrite [V] with the left singular
*            vectors of R**H
*               [[The optimal ratio N/NR for using QRF instead of padding
*                 with zeros. Here hard coded to 2; it must be at least
*                 two due to work space constraints.]]
*               OPTRATIO = ILAENV(6, 'ZGESVD', 'S' // 'O', NR,N,0,0)
*               OPTRATIO = MAX( OPTRATIO, 2 )
                OPTRATIO = 2
                IF ( OPTRATIO*NR .GT. N ) THEN
                   DO 1198 p = 1, NR
                      DO 1199 q = p, N
                         V(q,p) = CONJG(A(p,q))
 1199                 CONTINUE
 1198              CONTINUE
                   IF ( NR .GT. 1 )
     $             CALL ZLASET('U',NR-1,NR-1, CZERO,CZERO, V(1,2),
     $                          LDV)
*
                   CALL ZLASET('A',N,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
                   CALL ZGESVD( 'O', 'A', N, N, V, LDV, S, V, LDV,
     $                  U, LDU, CWORK(N+1), LCWORK-N, RWORK, INFO )
*
                   DO 1113 p = 1, N
                      V(p,p) = CONJG(V(p,p))
                      DO 1114 q = p + 1, N
                         CTMP   = CONJG(V(q,p))
                         V(q,p) = CONJG(V(p,q))
                         V(p,q) = CTMP
 1114                 CONTINUE
 1113              CONTINUE
                   CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
*              .. assemble the left singular vector matrix U of dimensions
*              (M x N1), i.e. (M x N) or (M x M).
*
                   DO 1111 p = 1, N
                      U(p,p) = CONJG(U(p,p))
                      DO 1112 q = p + 1, N
                         CTMP   = CONJG(U(q,p))
                         U(q,p) = CONJG(U(p,q))
                         U(p,q) = CTMP
 1112                 CONTINUE
 1111              CONTINUE
*
                   IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
                      CALL ZLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
                      IF ( N .LT. N1 ) THEN
                        CALL ZLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),
     $                               LDU)
                        CALL ZLASET('A',M-N,N1-N,CZERO,CONE,
     $                       U(N+1,N+1), LDU )
                      END IF
                   END IF
                ELSE
*                  .. copy R**H into [U] and overwrite [U] with the right
*                  singular vectors of R
                   DO 1196 p = 1, NR
                      DO 1197 q = p, N
                         U(q,NR+p) = CONJG(A(p,q))
 1197                 CONTINUE
 1196              CONTINUE
                   IF ( NR .GT. 1 )
     $             CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,U(1,NR+2),
     $                          LDU)
                   CALL ZGEQRF( N, NR, U(1,NR+1), LDU, CWORK(N+1),
     $                  CWORK(N+NR+1), LCWORK-N-NR, IERR )
                   DO 1143 p = 1, NR
                       DO 1144 q = 1, N
                           V(q,p) = CONJG(U(p,NR+q))
 1144                  CONTINUE
 1143              CONTINUE
                  CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
                  CALL ZGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
     $                 V,LDV, CWORK(N+NR+1),LCWORK-N-NR,RWORK, INFO )
                  CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
                  CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
                  CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),
     $                         LDV)
                  CALL ZUNMQR('R','C', N, N, NR, U(1,NR+1), LDU,
     $                 CWORK(N+1),V,LDV,CWORK(N+NR+1),LCWORK-N-NR,IERR)
                  CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
*                 .. assemble the left singular vector matrix U of dimensions
*                 (M x NR) or (M x N) or (M x M).
                  IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
                     CALL ZLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),
     $                            LDU)
                     IF ( NR .LT. N1 ) THEN
                     CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),
     $                            LDU)
                     CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
     $                    U(NR+1,NR+1),LDU)
                     END IF
                  END IF
                END IF
            END IF
*
         ELSE
*
*            .. apply ZGESVD to R [[this is the recommended option]]
*
             IF ( WNTVR .OR. ( NR .EQ. N ) ) THEN
*                .. copy R into [V] and overwrite V with the right singular vectors
                 CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
                IF ( NR .GT. 1 )
     $          CALL ZLASET( 'L', NR-1,NR-1, CZERO,CZERO, V(2,1),
     $                       LDV )
*               .. the right singular vectors of R overwrite [V], the NR left
*               singular vectors of R stored in [U](1:NR,1:NR)
                CALL ZGESVD( 'S', 'O', NR, N, V, LDV, S, U, LDU,
     $               V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
                CALL ZLAPMT( .FALSE., NR, N, V, LDV, IWORK )
*               .. now [V](1:NR,1:N) contains V(1:N,1:NR)**H
*               .. assemble the left singular vector matrix U of dimensions
*              (M x NR) or (M x N) or (M x M).
               IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
                  CALL ZLASET('A', M-NR,NR, CZERO,CZERO, U(NR+1,1),
     $                         LDU)
                  IF ( NR .LT. N1 ) THEN
                     CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),
     $                            LDU)
                     CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
     $                    U(NR+1,NR+1), LDU )
                  END IF
               END IF
*
             ELSE
*              .. need all N right singular vectors and NR < N
*              .. the requested number of the left singular vectors
*               is then N1 (N or M)
*               [[The optimal ratio N/NR for using LQ instead of padding
*                 with zeros. Here hard coded to 2; it must be at least
*                 two due to work space constraints.]]
*               OPTRATIO = ILAENV(6, 'ZGESVD', 'S' // 'O', NR,N,0,0)
*               OPTRATIO = MAX( OPTRATIO, 2 )
               OPTRATIO = 2
               IF ( OPTRATIO * NR .GT. N ) THEN
                  CALL ZLACPY( 'U', NR, N, A, LDA, V, LDV )
                  IF ( NR .GT. 1 )
     $            CALL ZLASET('L', NR-1,NR-1, CZERO,CZERO, V(2,1),
     $                         LDV)
*              .. the right singular vectors of R overwrite [V], the NR left
*                 singular vectors of R stored in [U](1:NR,1:NR)
                  CALL ZLASET('A', N-NR,N, CZERO,CZERO, V(NR+1,1),
     $                         LDV)
                  CALL ZGESVD( 'S', 'O', N, N, V, LDV, S, U, LDU,
     $                 V, LDV, CWORK(N+1), LCWORK-N, RWORK, INFO )
                  CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
*                 .. now [V] contains the adjoint of the matrix of the right
*                 singular vectors of A. The leading N left singular vectors
*                 are in [U](1:N,1:N)
*                 .. assemble the left singular vector matrix U of dimensions
*                 (M x N1), i.e. (M x N) or (M x M).
                  IF ( ( N .LT. M ) .AND. .NOT.(WNTUF)) THEN
                      CALL ZLASET('A',M-N,N,CZERO,CZERO,U(N+1,1),LDU)
                      IF ( N .LT. N1 ) THEN
                        CALL ZLASET('A',N,N1-N,CZERO,CZERO,U(1,N+1),
     $                               LDU)
                        CALL ZLASET( 'A',M-N,N1-N,CZERO,CONE,
     $                       U(N+1,N+1), LDU )
                      END IF
                  END IF
               ELSE
                  CALL ZLACPY( 'U', NR, N, A, LDA, U(NR+1,1), LDU )
                  IF ( NR .GT. 1 )
     $            CALL ZLASET('L',NR-1,NR-1,CZERO,CZERO,U(NR+2,1),
     $                         LDU)
                  CALL ZGELQF( NR, N, U(NR+1,1), LDU, CWORK(N+1),
     $                 CWORK(N+NR+1), LCWORK-N-NR, IERR )
                  CALL ZLACPY('L',NR,NR,U(NR+1,1),LDU,V,LDV)
                  IF ( NR .GT. 1 )
     $            CALL ZLASET('U',NR-1,NR-1,CZERO,CZERO,V(1,2),LDV)
                  CALL ZGESVD( 'S', 'O', NR, NR, V, LDV, S, U, LDU,
     $                 V, LDV, CWORK(N+NR+1), LCWORK-N-NR, RWORK, INFO )
                  CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
                  CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
                  CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),
     $                         LDV)
                  CALL ZUNMLQ('R','N',N,N,NR,U(NR+1,1),LDU,
     $                         CWORK(N+1),
     $                 V, LDV, CWORK(N+NR+1),LCWORK-N-NR,IERR)
                  CALL ZLAPMT( .FALSE., N, N, V, LDV, IWORK )
*               .. assemble the left singular vector matrix U of dimensions
*              (M x NR) or (M x N) or (M x M).
                  IF ( ( NR .LT. M ) .AND. .NOT.(WNTUF)) THEN
                     CALL ZLASET('A',M-NR,NR,CZERO,CZERO,U(NR+1,1),
     $                            LDU)
                     IF ( NR .LT. N1 ) THEN
                     CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),
     $                            LDU)
                     CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,
     $                    U(NR+1,NR+1), LDU )
                     END IF
                  END IF
               END IF
             END IF
*        .. end of the "R**H or R" branch
         END IF
*
*           The Q matrix from the first QRF is built into the left singular
*           vectors matrix U.
*
         IF ( .NOT. WNTUF )
     $       CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
     $            LDU, CWORK(N+1), LCWORK-N, IERR )
         IF ( ROWPRM .AND. .NOT.WNTUF )
     $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(N+1), -1 )
*
*     ... end of the "full SVD" branch
      END IF
*
*     Check whether some singular values are returned as zeros, e.g.
*     due to underflow, and update the numerical rank.
      p = NR
      DO 4001 q = p, 1, -1
          IF ( S(q) .GT. ZERO ) GO TO 4002
          NR = NR - 1
 4001 CONTINUE
 4002 CONTINUE
*
*     .. if numerical rank deficiency is detected, the truncated
*     singular values are set to zero.
      IF ( NR .LT. N ) CALL DLASET( 'G', N-NR,1, ZERO,ZERO, S(NR+1),
     $     N )
*     .. undo scaling; this may cause overflow in the largest singular
*     values.
      IF ( ASCALED )
     $   CALL DLASCL( 'G',0,0, ONE,SQRT(DBLE(M)), NR,1, S, N, IERR )
      IF ( CONDA ) RWORK(1) = SCONDA
      RWORK(2) = p - NR
*     .. p-NR is the number of singular values that are computed as
*     exact zeros in ZGESVD() applied to the (possibly truncated)
*     full row rank triangular (trapezoidal) factor of A.
      NUMRANK = NR
*
      RETURN
*
*     End of ZGESVDQ
*
      END