numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgesvdx.f | 29013B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
*> \brief <b> ZGESVDX computes the singular value decomposition (SVD) for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGESVDX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesvdx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesvdx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesvdx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, * $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, * $ LWORK, RWORK, IWORK, INFO ) * * * .. Scalar Arguments .. * CHARACTER JOBU, JOBVT, RANGE * INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS * DOUBLE PRECISION VL, VU * .. * .. Array Arguments .. * INTEGER IWORK( * ) * DOUBLE PRECISION S( * ), RWORK( * ) * COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ), * $ WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGESVDX computes the singular value decomposition (SVD) of a complex *> M-by-N matrix A, optionally computing the left and/or right singular *> vectors. The SVD is written *> *> A = U * SIGMA * transpose(V) *> *> where SIGMA is an M-by-N matrix which is zero except for its *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA *> are the singular values of A; they are real and non-negative, and *> are returned in descending order. The first min(m,n) columns of *> U and V are the left and right singular vectors of A. *> *> ZGESVDX uses an eigenvalue problem for obtaining the SVD, which *> allows for the computation of a subset of singular values and *> vectors. See DBDSVDX for details. *> *> Note that the routine returns V**T, not V. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU *> \verbatim *> JOBU is CHARACTER*1 *> Specifies options for computing all or part of the matrix U: *> = 'V': the first min(m,n) columns of U (the left singular *> vectors) or as specified by RANGE are returned in *> the array U; *> = 'N': no columns of U (no left singular vectors) are *> computed. *> \endverbatim *> *> \param[in] JOBVT *> \verbatim *> JOBVT is CHARACTER*1 *> Specifies options for computing all or part of the matrix *> V**T: *> = 'V': the first min(m,n) rows of V**T (the right singular *> vectors) or as specified by RANGE are returned in *> the array VT; *> = 'N': no rows of V**T (no right singular vectors) are *> computed. *> \endverbatim *> *> \param[in] RANGE *> \verbatim *> RANGE is CHARACTER*1 *> = 'A': all singular values will be found. *> = 'V': all singular values in the half-open interval (VL,VU] *> will be found. *> = 'I': the IL-th through IU-th singular values will be found. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the input matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the input matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, the contents of A are destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[in] VL *> \verbatim *> VL is DOUBLE PRECISION *> If RANGE='V', the lower bound of the interval to *> be searched for singular values. VU > VL. *> Not referenced if RANGE = 'A' or 'I'. *> \endverbatim *> *> \param[in] VU *> \verbatim *> VU is DOUBLE PRECISION *> If RANGE='V', the upper bound of the interval to *> be searched for singular values. VU > VL. *> Not referenced if RANGE = 'A' or 'I'. *> \endverbatim *> *> \param[in] IL *> \verbatim *> IL is INTEGER *> If RANGE='I', the index of the *> smallest singular value to be returned. *> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0. *> Not referenced if RANGE = 'A' or 'V'. *> \endverbatim *> *> \param[in] IU *> \verbatim *> IU is INTEGER *> If RANGE='I', the index of the *> largest singular value to be returned. *> 1 <= IL <= IU <= min(M,N), if min(M,N) > 0. *> Not referenced if RANGE = 'A' or 'V'. *> \endverbatim *> *> \param[out] NS *> \verbatim *> NS is INTEGER *> The total number of singular values found, *> 0 <= NS <= min(M,N). *> If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension (min(M,N)) *> The singular values of A, sorted so that S(i) >= S(i+1). *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX*16 array, dimension (LDU,UCOL) *> If JOBU = 'V', U contains columns of U (the left singular *> vectors, stored columnwise) as specified by RANGE; if *> JOBU = 'N', U is not referenced. *> Note: The user must ensure that UCOL >= NS; if RANGE = 'V', *> the exact value of NS is not known in advance and an upper *> bound must be used. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= 1; if *> JOBU = 'V', LDU >= M. *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is COMPLEX*16 array, dimension (LDVT,N) *> If JOBVT = 'V', VT contains the rows of V**T (the right singular *> vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', *> VT is not referenced. *> Note: The user must ensure that LDVT >= NS; if RANGE = 'V', *> the exact value of NS is not known in advance and an upper *> bound must be used. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. LDVT >= 1; if *> JOBVT = 'V', LDVT >= NS (see above). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK; *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see *> comments inside the code): *> - PATH 1 (M much larger than N) *> - PATH 1t (N much larger than M) *> LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. *> For good performance, LWORK should generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) *> LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)). *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (12*MIN(M,N)) *> If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, *> then IWORK contains the indices of the eigenvectors that failed *> to converge in DBDSVDX/DSTEVX. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, then i eigenvectors failed to converge *> in DBDSVDX/DSTEVX. *> if INFO = N*2 + 1, an internal error occurred in *> DBDSVDX *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gesvdx * * ===================================================================== SUBROUTINE ZGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, $ LWORK, RWORK, IWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBU, JOBVT, RANGE INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS DOUBLE PRECISION VL, VU * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION S( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ), $ WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), $ CONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. CHARACTER JOBZ, RNGTGK LOGICAL ALLS, INDS, LQUERY, VALS, WANTU, WANTVT INTEGER I, ID, IE, IERR, ILQF, ILTGK, IQRF, ISCL, $ ITAU, ITAUP, ITAUQ, ITEMP, ITEMPR, ITGKZ, $ IUTGK, J, K, MAXWRK, MINMN, MINWRK, MNTHR DOUBLE PRECISION ABSTOL, ANRM, BIGNUM, EPS, SMLNUM * .. * .. Local Arrays .. DOUBLE PRECISION DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL ZGEBRD, ZGELQF, ZGEQRF, ZLASCL, ZLASET, $ ZLACPY, $ ZUNMLQ, ZUNMBR, ZUNMQR, DBDSVDX, DLASCL, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input arguments. * NS = 0 INFO = 0 ABSTOL = 2*DLAMCH('S') LQUERY = ( LWORK.EQ.-1 ) MINMN = MIN( M, N ) WANTU = LSAME( JOBU, 'V' ) WANTVT = LSAME( JOBVT, 'V' ) IF( WANTU .OR. WANTVT ) THEN JOBZ = 'V' ELSE JOBZ = 'N' END IF ALLS = LSAME( RANGE, 'A' ) VALS = LSAME( RANGE, 'V' ) INDS = LSAME( RANGE, 'I' ) * INFO = 0 IF( .NOT.LSAME( JOBU, 'V' ) .AND. $ .NOT.LSAME( JOBU, 'N' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( JOBVT, 'V' ) .AND. $ .NOT.LSAME( JOBVT, 'N' ) ) THEN INFO = -2 ELSE IF( .NOT.( ALLS .OR. VALS .OR. INDS ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( M.GT.LDA ) THEN INFO = -7 ELSE IF( MINMN.GT.0 ) THEN IF( VALS ) THEN IF( VL.LT.ZERO ) THEN INFO = -8 ELSE IF( VU.LE.VL ) THEN INFO = -9 END IF ELSE IF( INDS ) THEN IF( IL.LT.1 .OR. IL.GT.MAX( 1, MINMN ) ) THEN INFO = -10 ELSE IF( IU.LT.MIN( MINMN, IL ) .OR. IU.GT.MINMN ) THEN INFO = -11 END IF END IF IF( INFO.EQ.0 ) THEN IF( WANTU .AND. LDU.LT.M ) THEN INFO = -15 ELSE IF( WANTVT ) THEN IF( INDS ) THEN IF( LDVT.LT.IU-IL+1 ) THEN INFO = -17 END IF ELSE IF( LDVT.LT.MINMN ) THEN INFO = -17 END IF END IF END IF END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV.) * IF( INFO.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 IF( MINMN.GT.0 ) THEN IF( M.GE.N ) THEN MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, $ 0 ) IF( M.GE.MNTHR ) THEN * * Path 1 (M much larger than N) * MINWRK = N*(N+5) MAXWRK = N + N*ILAENV(1,'ZGEQRF',' ',M,N,-1,-1) MAXWRK = MAX(MAXWRK, $ N*N+2*N+2*N*ILAENV(1,'ZGEBRD',' ',N,N,-1, $ -1)) IF (WANTU .OR. WANTVT) THEN MAXWRK = MAX(MAXWRK, $ N*N+2*N+N*ILAENV(1,'ZUNMQR','LN',N,N,N, $ -1)) END IF ELSE * * Path 2 (M at least N, but not much larger) * MINWRK = 3*N + M MAXWRK = 2*N + (M+N)*ILAENV(1,'ZGEBRD',' ',M,N,-1, $ -1) IF (WANTU .OR. WANTVT) THEN MAXWRK = MAX(MAXWRK, $ 2*N+N*ILAENV(1,'ZUNMQR','LN',N,N,N,-1)) END IF END IF ELSE MNTHR = ILAENV( 6, 'ZGESVD', JOBU // JOBVT, M, N, 0, $ 0 ) IF( N.GE.MNTHR ) THEN * * Path 1t (N much larger than M) * MINWRK = M*(M+5) MAXWRK = M + M*ILAENV(1,'ZGELQF',' ',M,N,-1,-1) MAXWRK = MAX(MAXWRK, $ M*M+2*M+2*M*ILAENV(1,'ZGEBRD',' ',M,M,-1, $ -1)) IF (WANTU .OR. WANTVT) THEN MAXWRK = MAX(MAXWRK, $ M*M+2*M+M*ILAENV(1,'ZUNMQR','LN',M,M,M, $ -1)) END IF ELSE * * Path 2t (N greater than M, but not much larger) * * MINWRK = 3*M + N MAXWRK = 2*M + (M+N)*ILAENV(1,'ZGEBRD',' ',M,N,-1, $ -1) IF (WANTU .OR. WANTVT) THEN MAXWRK = MAX(MAXWRK, $ 2*M+M*ILAENV(1,'ZUNMQR','LN',M,M,M,-1)) END IF END IF END IF END IF MAXWRK = MAX( MAXWRK, MINWRK ) WORK( 1 ) = DCMPLX( DBLE( MAXWRK ), ZERO ) * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -19 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGESVDX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) THEN RETURN END IF * * Set singular values indices accord to RANGE='A'. * IF( ALLS ) THEN RNGTGK = 'I' ILTGK = 1 IUTGK = MIN( M, N ) ELSE IF( INDS ) THEN RNGTGK = 'I' ILTGK = IL IUTGK = IU ELSE RNGTGK = 'V' ILTGK = 0 IUTGK = 0 END IF * * Get machine constants * EPS = DLAMCH( 'P' ) SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = ZLANGE( 'M', M, N, A, LDA, DUM ) ISCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ISCL = 1 CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) ELSE IF( ANRM.GT.BIGNUM ) THEN ISCL = 1 CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) END IF * IF( M.GE.N ) THEN * * A has at least as many rows as columns. If A has sufficiently * more rows than columns, first reduce A using the QR * decomposition. * IF( M.GE.MNTHR ) THEN * * Path 1 (M much larger than N): * A = Q * R = Q * ( QB * B * PB**T ) * = Q * ( QB * ( UB * S * VB**T ) * PB**T ) * U = Q * QB * UB; V**T = VB**T * PB**T * * Compute A=Q*R * (Workspace: need 2*N, prefer N+N*NB) * ITAU = 1 ITEMP = ITAU + N CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) * * Copy R into WORK and bidiagonalize it: * (Workspace: need N*N+3*N, prefer N*N+N+2*N*NB) * IQRF = ITEMP ITAUQ = ITEMP + N*N ITAUP = ITAUQ + N ITEMP = ITAUP + N ID = 1 IE = ID + N ITGKZ = IE + N CALL ZLACPY( 'U', N, N, A, LDA, WORK( IQRF ), N ) CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, $ WORK( IQRF+1 ), N ) CALL ZGEBRD( N, N, WORK( IQRF ), N, RWORK( ID ), $ RWORK( IE ), WORK( ITAUQ ), WORK( ITAUP ), $ WORK( ITEMP ), LWORK-ITEMP+1, INFO ) ITEMPR = ITGKZ + N*(N*2+1) * * Solve eigenvalue problem TGK*Z=Z*S. * (Workspace: need 2*N*N+14*N) * CALL DBDSVDX( 'U', JOBZ, RNGTGK, N, RWORK( ID ), $ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S, $ RWORK( ITGKZ ), N*2, RWORK( ITEMPR ), $ IWORK, INFO) * * If needed, compute left singular vectors. * IF( WANTU ) THEN K = ITGKZ DO I = 1, NS DO J = 1, N U( J, I ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + N END DO CALL ZLASET( 'A', M-N, NS, CZERO, CZERO, U( N+1,1 ), $ LDU) * * Call ZUNMBR to compute QB*UB. * (Workspace in WORK( ITEMP ): need N, prefer N*NB) * CALL ZUNMBR( 'Q', 'L', 'N', N, NS, N, WORK( IQRF ), N, $ WORK( ITAUQ ), U, LDU, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) * * Call ZUNMQR to compute Q*(QB*UB). * (Workspace in WORK( ITEMP ): need N, prefer N*NB) * CALL ZUNMQR( 'L', 'N', M, NS, N, A, LDA, $ WORK( ITAU ), U, LDU, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF * * If needed, compute right singular vectors. * IF( WANTVT) THEN K = ITGKZ + N DO I = 1, NS DO J = 1, N VT( I, J ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + N END DO * * Call ZUNMBR to compute VB**T * PB**T * (Workspace in WORK( ITEMP ): need N, prefer N*NB) * CALL ZUNMBR( 'P', 'R', 'C', NS, N, N, WORK( IQRF ), N, $ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF ELSE * * Path 2 (M at least N, but not much larger) * Reduce A to bidiagonal form without QR decomposition * A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T * U = QB * UB; V**T = VB**T * PB**T * * Bidiagonalize A * (Workspace: need 2*N+M, prefer 2*N+(M+N)*NB) * ITAUQ = 1 ITAUP = ITAUQ + N ITEMP = ITAUP + N ID = 1 IE = ID + N ITGKZ = IE + N CALL ZGEBRD( M, N, A, LDA, RWORK( ID ), RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) ITEMPR = ITGKZ + N*(N*2+1) * * Solve eigenvalue problem TGK*Z=Z*S. * (Workspace: need 2*N*N+14*N) * CALL DBDSVDX( 'U', JOBZ, RNGTGK, N, RWORK( ID ), $ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S, $ RWORK( ITGKZ ), N*2, RWORK( ITEMPR ), $ IWORK, INFO) * * If needed, compute left singular vectors. * IF( WANTU ) THEN K = ITGKZ DO I = 1, NS DO J = 1, N U( J, I ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + N END DO CALL ZLASET( 'A', M-N, NS, CZERO, CZERO, U( N+1,1 ), $ LDU) * * Call ZUNMBR to compute QB*UB. * (Workspace in WORK( ITEMP ): need N, prefer N*NB) * CALL ZUNMBR( 'Q', 'L', 'N', M, NS, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( ITEMP ), $ LWORK-ITEMP+1, IERR ) END IF * * If needed, compute right singular vectors. * IF( WANTVT) THEN K = ITGKZ + N DO I = 1, NS DO J = 1, N VT( I, J ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + N END DO * * Call ZUNMBR to compute VB**T * PB**T * (Workspace in WORK( ITEMP ): need N, prefer N*NB) * CALL ZUNMBR( 'P', 'R', 'C', NS, N, N, A, LDA, $ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ), $ LWORK-ITEMP+1, IERR ) END IF END IF ELSE * * A has more columns than rows. If A has sufficiently more * columns than rows, first reduce A using the LQ decomposition. * IF( N.GE.MNTHR ) THEN * * Path 1t (N much larger than M): * A = L * Q = ( QB * B * PB**T ) * Q * = ( QB * ( UB * S * VB**T ) * PB**T ) * Q * U = QB * UB ; V**T = VB**T * PB**T * Q * * Compute A=L*Q * (Workspace: need 2*M, prefer M+M*NB) * ITAU = 1 ITEMP = ITAU + M CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) * Copy L into WORK and bidiagonalize it: * (Workspace in WORK( ITEMP ): need M*M+3*M, prefer M*M+M+2*M*NB) * ILQF = ITEMP ITAUQ = ILQF + M*M ITAUP = ITAUQ + M ITEMP = ITAUP + M ID = 1 IE = ID + M ITGKZ = IE + M CALL ZLACPY( 'L', M, M, A, LDA, WORK( ILQF ), M ) CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, $ WORK( ILQF+M ), M ) CALL ZGEBRD( M, M, WORK( ILQF ), M, RWORK( ID ), $ RWORK( IE ), WORK( ITAUQ ), WORK( ITAUP ), $ WORK( ITEMP ), LWORK-ITEMP+1, INFO ) ITEMPR = ITGKZ + M*(M*2+1) * * Solve eigenvalue problem TGK*Z=Z*S. * (Workspace: need 2*M*M+14*M) * CALL DBDSVDX( 'U', JOBZ, RNGTGK, M, RWORK( ID ), $ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S, $ RWORK( ITGKZ ), M*2, RWORK( ITEMPR ), $ IWORK, INFO) * * If needed, compute left singular vectors. * IF( WANTU ) THEN K = ITGKZ DO I = 1, NS DO J = 1, M U( J, I ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + M END DO * * Call ZUNMBR to compute QB*UB. * (Workspace in WORK( ITEMP ): need M, prefer M*NB) * CALL ZUNMBR( 'Q', 'L', 'N', M, NS, M, WORK( ILQF ), M, $ WORK( ITAUQ ), U, LDU, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF * * If needed, compute right singular vectors. * IF( WANTVT) THEN K = ITGKZ + M DO I = 1, NS DO J = 1, M VT( I, J ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + M END DO CALL ZLASET( 'A', NS, N-M, CZERO, CZERO, $ VT( 1,M+1 ), LDVT ) * * Call ZUNMBR to compute (VB**T)*(PB**T) * (Workspace in WORK( ITEMP ): need M, prefer M*NB) * CALL ZUNMBR( 'P', 'R', 'C', NS, M, M, WORK( ILQF ), M, $ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) * * Call ZUNMLQ to compute ((VB**T)*(PB**T))*Q. * (Workspace in WORK( ITEMP ): need M, prefer M*NB) * CALL ZUNMLQ( 'R', 'N', NS, N, M, A, LDA, $ WORK( ITAU ), VT, LDVT, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF ELSE * * Path 2t (N greater than M, but not much larger) * Reduce to bidiagonal form without LQ decomposition * A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T * U = QB * UB; V**T = VB**T * PB**T * * Bidiagonalize A * (Workspace: need 2*M+N, prefer 2*M+(M+N)*NB) * ITAUQ = 1 ITAUP = ITAUQ + M ITEMP = ITAUP + M ID = 1 IE = ID + M ITGKZ = IE + M CALL ZGEBRD( M, N, A, LDA, RWORK( ID ), RWORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) ITEMPR = ITGKZ + M*(M*2+1) * * Solve eigenvalue problem TGK*Z=Z*S. * (Workspace: need 2*M*M+14*M) * CALL DBDSVDX( 'L', JOBZ, RNGTGK, M, RWORK( ID ), $ RWORK( IE ), VL, VU, ILTGK, IUTGK, NS, S, $ RWORK( ITGKZ ), M*2, RWORK( ITEMPR ), $ IWORK, INFO) * * If needed, compute left singular vectors. * IF( WANTU ) THEN K = ITGKZ DO I = 1, NS DO J = 1, M U( J, I ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + M END DO * * Call ZUNMBR to compute QB*UB. * (Workspace in WORK( ITEMP ): need M, prefer M*NB) * CALL ZUNMBR( 'Q', 'L', 'N', M, NS, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF * * If needed, compute right singular vectors. * IF( WANTVT) THEN K = ITGKZ + M DO I = 1, NS DO J = 1, M VT( I, J ) = DCMPLX( RWORK( K ), ZERO ) K = K + 1 END DO K = K + M END DO CALL ZLASET( 'A', NS, N-M, CZERO, CZERO, $ VT( 1,M+1 ), LDVT ) * * Call ZUNMBR to compute VB**T * PB**T * (Workspace in WORK( ITEMP ): need M, prefer M*NB) * CALL ZUNMBR( 'P', 'R', 'C', NS, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, WORK( ITEMP ), $ LWORK-ITEMP+1, INFO ) END IF END IF END IF * * Undo scaling if necessary * IF( ISCL.EQ.1 ) THEN IF( ANRM.GT.BIGNUM ) $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, $ S, MINMN, INFO ) IF( ANRM.LT.SMLNUM ) $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, $ S, MINMN, INFO ) END IF * * Return optimal workspace in WORK(1) * WORK( 1 ) = DCMPLX( DBLE( MAXWRK ), ZERO ) * RETURN * * End of ZGESVDX * END