numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zggbal.f | 16151B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
*> \brief \b ZGGBAL * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGGBAL + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbal.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbal.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbal.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, * RSCALE, WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOB * INTEGER IHI, ILO, INFO, LDA, LDB, N * .. * .. Array Arguments .. * DOUBLE PRECISION LSCALE( * ), RSCALE( * ), WORK( * ) * COMPLEX*16 A( LDA, * ), B( LDB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGGBAL balances a pair of general complex matrices (A,B). This *> involves, first, permuting A and B by similarity transformations to *> isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N *> elements on the diagonal; and second, applying a diagonal similarity *> transformation to rows and columns ILO to IHI to make the rows *> and columns as close in norm as possible. Both steps are optional. *> *> Balancing may reduce the 1-norm of the matrices, and improve the *> accuracy of the computed eigenvalues and/or eigenvectors in the *> generalized eigenvalue problem A*x = lambda*B*x. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is CHARACTER*1 *> Specifies the operations to be performed on A and B: *> = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 *> and RSCALE(I) = 1.0 for i=1,...,N; *> = 'P': permute only; *> = 'S': scale only; *> = 'B': both permute and scale. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the input matrix A. *> On exit, A is overwritten by the balanced matrix. *> If JOB = 'N', A is not referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,N) *> On entry, the input matrix B. *> On exit, B is overwritten by the balanced matrix. *> If JOB = 'N', B is not referenced. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[out] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI are set to integers such that on exit *> A(i,j) = 0 and B(i,j) = 0 if i > j and *> j = 1,...,ILO-1 or i = IHI+1,...,N. *> If JOB = 'N' or 'S', ILO = 1 and IHI = N. *> \endverbatim *> *> \param[out] LSCALE *> \verbatim *> LSCALE is DOUBLE PRECISION array, dimension (N) *> Details of the permutations and scaling factors applied *> to the left side of A and B. If P(j) is the index of the *> row interchanged with row j, and D(j) is the scaling factor *> applied to row j, then *> LSCALE(j) = P(j) for J = 1,...,ILO-1 *> = D(j) for J = ILO,...,IHI *> = P(j) for J = IHI+1,...,N. *> The order in which the interchanges are made is N to IHI+1, *> then 1 to ILO-1. *> \endverbatim *> *> \param[out] RSCALE *> \verbatim *> RSCALE is DOUBLE PRECISION array, dimension (N) *> Details of the permutations and scaling factors applied *> to the right side of A and B. If P(j) is the index of the *> column interchanged with column j, and D(j) is the scaling *> factor applied to column j, then *> RSCALE(j) = P(j) for J = 1,...,ILO-1 *> = D(j) for J = ILO,...,IHI *> = P(j) for J = IHI+1,...,N. *> The order in which the interchanges are made is N to IHI+1, *> then 1 to ILO-1. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (lwork) *> lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and *> at least 1 when JOB = 'N' or 'P'. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ggbal * *> \par Further Details: * ===================== *> *> \verbatim *> *> See R.C. WARD, Balancing the generalized eigenvalue problem, *> SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. *> \endverbatim *> * ===================================================================== SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, $ RSCALE, WORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOB INTEGER IHI, ILO, INFO, LDA, LDB, N * .. * .. Array Arguments .. DOUBLE PRECISION LSCALE( * ), RSCALE( * ), WORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 ) DOUBLE PRECISION THREE, SCLFAC PARAMETER ( THREE = 3.0D+0, SCLFAC = 1.0D+1 ) COMPLEX*16 CZERO PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, ICAB, IFLOW, IP1, IR, IRAB, IT, J, JC, JP1, $ K, KOUNT, L, LCAB, LM1, LRAB, LSFMAX, LSFMIN, $ M, NR, NRP2 DOUBLE PRECISION ALPHA, BASL, BETA, CAB, CMAX, COEF, COEF2, $ COEF5, COR, EW, EWC, GAMMA, PGAMMA, RAB, SFMAX, $ SFMIN, SUM, T, TA, TB, TC COMPLEX*16 CDUM * .. * .. External Functions .. LOGICAL LSAME INTEGER IZAMAX DOUBLE PRECISION DDOT, DLAMCH EXTERNAL LSAME, IZAMAX, DDOT, DLAMCH * .. * .. External Subroutines .. EXTERNAL DAXPY, DSCAL, XERBLA, ZDSCAL, ZSWAP * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, INT, LOG10, MAX, MIN, SIGN * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 IF( .NOT.LSAME( JOB, 'N' ) .AND. $ .NOT.LSAME( JOB, 'P' ) .AND. $ .NOT.LSAME( JOB, 'S' ) .AND. $ .NOT.LSAME( JOB, 'B' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGBAL', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN ILO = 1 IHI = N RETURN END IF * IF( N.EQ.1 ) THEN ILO = 1 IHI = N LSCALE( 1 ) = ONE RSCALE( 1 ) = ONE RETURN END IF * IF( LSAME( JOB, 'N' ) ) THEN ILO = 1 IHI = N DO 10 I = 1, N LSCALE( I ) = ONE RSCALE( I ) = ONE 10 CONTINUE RETURN END IF * K = 1 L = N IF( LSAME( JOB, 'S' ) ) $ GO TO 190 * GO TO 30 * * Permute the matrices A and B to isolate the eigenvalues. * * Find row with one nonzero in columns 1 through L * 20 CONTINUE L = LM1 IF( L.NE.1 ) $ GO TO 30 * RSCALE( 1 ) = 1 LSCALE( 1 ) = 1 GO TO 190 * 30 CONTINUE LM1 = L - 1 DO 80 I = L, 1, -1 DO 40 J = 1, LM1 JP1 = J + 1 IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO ) $ GO TO 50 40 CONTINUE J = L GO TO 70 * 50 CONTINUE DO 60 J = JP1, L IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO ) $ GO TO 80 60 CONTINUE J = JP1 - 1 * 70 CONTINUE M = L IFLOW = 1 GO TO 160 80 CONTINUE GO TO 100 * * Find column with one nonzero in rows K through N * 90 CONTINUE K = K + 1 * 100 CONTINUE DO 150 J = K, L DO 110 I = K, LM1 IP1 = I + 1 IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO ) $ GO TO 120 110 CONTINUE I = L GO TO 140 120 CONTINUE DO 130 I = IP1, L IF( A( I, J ).NE.CZERO .OR. B( I, J ).NE.CZERO ) $ GO TO 150 130 CONTINUE I = IP1 - 1 140 CONTINUE M = K IFLOW = 2 GO TO 160 150 CONTINUE GO TO 190 * * Permute rows M and I * 160 CONTINUE LSCALE( M ) = I IF( I.EQ.M ) $ GO TO 170 CALL ZSWAP( N-K+1, A( I, K ), LDA, A( M, K ), LDA ) CALL ZSWAP( N-K+1, B( I, K ), LDB, B( M, K ), LDB ) * * Permute columns M and J * 170 CONTINUE RSCALE( M ) = J IF( J.EQ.M ) $ GO TO 180 CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 ) CALL ZSWAP( L, B( 1, J ), 1, B( 1, M ), 1 ) * 180 CONTINUE GO TO ( 20, 90 )IFLOW * 190 CONTINUE ILO = K IHI = L * IF( LSAME( JOB, 'P' ) ) THEN DO 195 I = ILO, IHI LSCALE( I ) = ONE RSCALE( I ) = ONE 195 CONTINUE RETURN END IF * IF( ILO.EQ.IHI ) $ RETURN * * Balance the submatrix in rows ILO to IHI. * NR = IHI - ILO + 1 DO 200 I = ILO, IHI RSCALE( I ) = ZERO LSCALE( I ) = ZERO * WORK( I ) = ZERO WORK( I+N ) = ZERO WORK( I+2*N ) = ZERO WORK( I+3*N ) = ZERO WORK( I+4*N ) = ZERO WORK( I+5*N ) = ZERO 200 CONTINUE * * Compute right side vector in resulting linear equations * BASL = LOG10( SCLFAC ) DO 240 I = ILO, IHI DO 230 J = ILO, IHI IF( A( I, J ).EQ.CZERO ) THEN TA = ZERO GO TO 210 END IF TA = LOG10( CABS1( A( I, J ) ) ) / BASL * 210 CONTINUE IF( B( I, J ).EQ.CZERO ) THEN TB = ZERO GO TO 220 END IF TB = LOG10( CABS1( B( I, J ) ) ) / BASL * 220 CONTINUE WORK( I+4*N ) = WORK( I+4*N ) - TA - TB WORK( J+5*N ) = WORK( J+5*N ) - TA - TB 230 CONTINUE 240 CONTINUE * COEF = ONE / DBLE( 2*NR ) COEF2 = COEF*COEF COEF5 = HALF*COEF2 NRP2 = NR + 2 BETA = ZERO IT = 1 * * Start generalized conjugate gradient iteration * 250 CONTINUE * GAMMA = DDOT( NR, WORK( ILO+4*N ), 1, WORK( ILO+4*N ), 1 ) + $ DDOT( NR, WORK( ILO+5*N ), 1, WORK( ILO+5*N ), 1 ) * EW = ZERO EWC = ZERO DO 260 I = ILO, IHI EW = EW + WORK( I+4*N ) EWC = EWC + WORK( I+5*N ) 260 CONTINUE * GAMMA = COEF*GAMMA - COEF2*( EW**2+EWC**2 ) - COEF5*( EW-EWC )**2 IF( GAMMA.EQ.ZERO ) $ GO TO 350 IF( IT.NE.1 ) $ BETA = GAMMA / PGAMMA T = COEF5*( EWC-THREE*EW ) TC = COEF5*( EW-THREE*EWC ) * CALL DSCAL( NR, BETA, WORK( ILO ), 1 ) CALL DSCAL( NR, BETA, WORK( ILO+N ), 1 ) * CALL DAXPY( NR, COEF, WORK( ILO+4*N ), 1, WORK( ILO+N ), 1 ) CALL DAXPY( NR, COEF, WORK( ILO+5*N ), 1, WORK( ILO ), 1 ) * DO 270 I = ILO, IHI WORK( I ) = WORK( I ) + TC WORK( I+N ) = WORK( I+N ) + T 270 CONTINUE * * Apply matrix to vector * DO 300 I = ILO, IHI KOUNT = 0 SUM = ZERO DO 290 J = ILO, IHI IF( A( I, J ).EQ.CZERO ) $ GO TO 280 KOUNT = KOUNT + 1 SUM = SUM + WORK( J ) 280 CONTINUE IF( B( I, J ).EQ.CZERO ) $ GO TO 290 KOUNT = KOUNT + 1 SUM = SUM + WORK( J ) 290 CONTINUE WORK( I+2*N ) = DBLE( KOUNT )*WORK( I+N ) + SUM 300 CONTINUE * DO 330 J = ILO, IHI KOUNT = 0 SUM = ZERO DO 320 I = ILO, IHI IF( A( I, J ).EQ.CZERO ) $ GO TO 310 KOUNT = KOUNT + 1 SUM = SUM + WORK( I+N ) 310 CONTINUE IF( B( I, J ).EQ.CZERO ) $ GO TO 320 KOUNT = KOUNT + 1 SUM = SUM + WORK( I+N ) 320 CONTINUE WORK( J+3*N ) = DBLE( KOUNT )*WORK( J ) + SUM 330 CONTINUE * SUM = DDOT( NR, WORK( ILO+N ), 1, WORK( ILO+2*N ), 1 ) + $ DDOT( NR, WORK( ILO ), 1, WORK( ILO+3*N ), 1 ) ALPHA = GAMMA / SUM * * Determine correction to current iteration * CMAX = ZERO DO 340 I = ILO, IHI COR = ALPHA*WORK( I+N ) IF( ABS( COR ).GT.CMAX ) $ CMAX = ABS( COR ) LSCALE( I ) = LSCALE( I ) + COR COR = ALPHA*WORK( I ) IF( ABS( COR ).GT.CMAX ) $ CMAX = ABS( COR ) RSCALE( I ) = RSCALE( I ) + COR 340 CONTINUE IF( CMAX.LT.HALF ) $ GO TO 350 * CALL DAXPY( NR, -ALPHA, WORK( ILO+2*N ), 1, WORK( ILO+4*N ), $ 1 ) CALL DAXPY( NR, -ALPHA, WORK( ILO+3*N ), 1, WORK( ILO+5*N ), $ 1 ) * PGAMMA = GAMMA IT = IT + 1 IF( IT.LE.NRP2 ) $ GO TO 250 * * End generalized conjugate gradient iteration * 350 CONTINUE SFMIN = DLAMCH( 'S' ) SFMAX = ONE / SFMIN LSFMIN = INT( LOG10( SFMIN ) / BASL+ONE ) LSFMAX = INT( LOG10( SFMAX ) / BASL ) DO 360 I = ILO, IHI IRAB = IZAMAX( N-ILO+1, A( I, ILO ), LDA ) RAB = ABS( A( I, IRAB+ILO-1 ) ) IRAB = IZAMAX( N-ILO+1, B( I, ILO ), LDB ) RAB = MAX( RAB, ABS( B( I, IRAB+ILO-1 ) ) ) LRAB = INT( LOG10( RAB+SFMIN ) / BASL+ONE ) IR = INT(LSCALE( I ) + SIGN( HALF, LSCALE( I ) )) IR = MIN( MAX( IR, LSFMIN ), LSFMAX, LSFMAX-LRAB ) LSCALE( I ) = SCLFAC**IR ICAB = IZAMAX( IHI, A( 1, I ), 1 ) CAB = ABS( A( ICAB, I ) ) ICAB = IZAMAX( IHI, B( 1, I ), 1 ) CAB = MAX( CAB, ABS( B( ICAB, I ) ) ) LCAB = INT( LOG10( CAB+SFMIN ) / BASL+ONE ) JC = INT(RSCALE( I ) + SIGN( HALF, RSCALE( I ) )) JC = MIN( MAX( JC, LSFMIN ), LSFMAX, LSFMAX-LCAB ) RSCALE( I ) = SCLFAC**JC 360 CONTINUE * * Row scaling of matrices A and B * DO 370 I = ILO, IHI CALL ZDSCAL( N-ILO+1, LSCALE( I ), A( I, ILO ), LDA ) CALL ZDSCAL( N-ILO+1, LSCALE( I ), B( I, ILO ), LDB ) 370 CONTINUE * * Column scaling of matrices A and B * DO 380 J = ILO, IHI CALL ZDSCAL( IHI, RSCALE( J ), A( 1, J ), 1 ) CALL ZDSCAL( IHI, RSCALE( J ), B( 1, J ), 1 ) 380 CONTINUE * RETURN * * End of ZGGBAL * END