numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zggglm.f | 11197B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
*> \brief \b ZGGGLM * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGGGLM + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggglm.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggglm.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggglm.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), * $ X( * ), Y( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGGGLM solves a general Gauss-Markov linear model (GLM) problem: *> *> minimize || y ||_2 subject to d = A*x + B*y *> x *> *> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a *> given N-vector. It is assumed that M <= N <= M+P, and *> *> rank(A) = M and rank( A B ) = N. *> *> Under these assumptions, the constrained equation is always *> consistent, and there is a unique solution x and a minimal 2-norm *> solution y, which is obtained using a generalized QR factorization *> of the matrices (A, B) given by *> *> A = Q*(R), B = Q*T*Z. *> (0) *> *> In particular, if matrix B is square nonsingular, then the problem *> GLM is equivalent to the following weighted linear least squares *> problem *> *> minimize || inv(B)*(d-A*x) ||_2 *> x *> *> where inv(B) denotes the inverse of B. *> *> Callers of this subroutine should note that the singularity/rank-deficiency checks *> implemented in this subroutine are rudimentary. The ZTRTRS subroutine called by this *> subroutine only signals a failure due to singularity if the problem is exactly singular. *> *> It is conceivable for one (or more) of the factors involved in the generalized QR *> factorization of the pair (A, B) to be subnormally close to singularity without this *> subroutine signalling an error. The solutions computed for such almost-rank-deficient *> problems may be less accurate due to a loss of numerical precision. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of columns of the matrix A. 0 <= M <= N. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of columns of the matrix B. P >= N-M. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,M) *> On entry, the N-by-M matrix A. *> On exit, the upper triangular part of the array A contains *> the M-by-M upper triangular matrix R. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,P) *> On entry, the N-by-P matrix B. *> On exit, if N <= P, the upper triangle of the subarray *> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; *> if N > P, the elements on and above the (N-P)th subdiagonal *> contain the N-by-P upper trapezoidal matrix T. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] D *> \verbatim *> D is COMPLEX*16 array, dimension (N) *> On entry, D is the left hand side of the GLM equation. *> On exit, D is destroyed. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (M) *> \endverbatim *> *> \param[out] Y *> \verbatim *> Y is COMPLEX*16 array, dimension (P) *> *> On exit, X and Y are the solutions of the GLM problem. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N+M+P). *> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, *> where NB is an upper bound for the optimal blocksizes for *> ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> = 1: the upper triangular factor R associated with A in the *> generalized QR factorization of the pair (A, B) is exactly *> singular, so that rank(A) < M; the least squares *> solution could not be computed. *> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal *> factor T associated with B in the generalized QR *> factorization of the pair (A, B) is exactly singular, so that *> rank( A B ) < N; the least squares solution could not *> be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup ggglm * * ===================================================================== SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, $ LWORK, $ INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), $ X( * ), Y( * ) * .. * * =================================================================== * * .. Parameters .. COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3, $ NB4, NP * .. * .. External Subroutines .. EXTERNAL XERBLA, ZCOPY, ZGEMV, ZGGQRF, ZTRTRS, $ ZUNMQR, $ ZUNMRQ * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 NP = MIN( N, P ) LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 ELSE IF( M.LT.0 .OR. M.GT.N ) THEN INFO = -2 ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF * * Calculate workspace * IF( INFO.EQ.0) THEN IF( N.EQ.0 ) THEN LWKMIN = 1 LWKOPT = 1 ELSE NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, M, -1, -1 ) NB2 = ILAENV( 1, 'ZGERQF', ' ', N, M, -1, -1 ) NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 ) NB4 = ILAENV( 1, 'ZUNMRQ', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3, NB4 ) LWKMIN = M + N + P LWKOPT = M + NP + MAX( N, P )*NB END IF WORK( 1 ) = LWKOPT * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -12 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGGLM', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN DO I = 1, M X(I) = CZERO END DO DO I = 1, P Y(I) = CZERO END DO RETURN END IF * * Compute the GQR factorization of matrices A and B: * * Q**H*A = ( R11 ) M, Q**H*B*Z**H = ( T11 T12 ) M * ( 0 ) N-M ( 0 T22 ) N-M * M M+P-N N-M * * where R11 and T22 are upper triangular, and Q and Z are * unitary. * CALL ZGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ), $ WORK( M+NP+1 ), LWORK-M-NP, INFO ) LOPT = INT( WORK( M+NP+1 ) ) * * Update left-hand-side vector d = Q**H*d = ( d1 ) M * ( d2 ) N-M * CALL ZUNMQR( 'Left', 'Conjugate transpose', N, 1, M, A, LDA, $ WORK, $ D, MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO ) LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) ) * * Solve T22*y2 = d2 for y2 * IF( N.GT.M ) THEN CALL ZTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1, $ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO ) * IF( INFO.GT.0 ) THEN INFO = 1 RETURN END IF * CALL ZCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 ) END IF * * Set y1 = 0 * DO 10 I = 1, M + P - N Y( I ) = CZERO 10 CONTINUE * * Update d1 = d1 - T12*y2 * CALL ZGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), $ LDB, $ Y( M+P-N+1 ), 1, CONE, D, 1 ) * * Solve triangular system: R11*x = d1 * IF( M.GT.0 ) THEN CALL ZTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, $ LDA, $ D, M, INFO ) * IF( INFO.GT.0 ) THEN INFO = 2 RETURN END IF * * Copy D to X * CALL ZCOPY( M, D, 1, X, 1 ) END IF * * Backward transformation y = Z**H *y * CALL ZUNMRQ( 'Left', 'Conjugate transpose', P, 1, NP, $ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y, $ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO ) WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) ) * RETURN * * End of ZGGGLM * END