numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgghd3.f | 32483B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
*> \brief \b ZGGHD3 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGGHD3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghd3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghd3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghd3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * LDQ, Z, LDZ, WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER COMPQ, COMPZ * INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), * $ Z( LDZ, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGGHD3 reduces a pair of complex matrices (A,B) to generalized upper *> Hessenberg form using unitary transformations, where A is a *> general matrix and B is upper triangular. The form of the *> generalized eigenvalue problem is *> A*x = lambda*B*x, *> and B is typically made upper triangular by computing its QR *> factorization and moving the unitary matrix Q to the left side *> of the equation. *> *> This subroutine simultaneously reduces A to a Hessenberg matrix H: *> Q**H*A*Z = H *> and transforms B to another upper triangular matrix T: *> Q**H*B*Z = T *> in order to reduce the problem to its standard form *> H*y = lambda*T*y *> where y = Z**H*x. *> *> The unitary matrices Q and Z are determined as products of Givens *> rotations. They may either be formed explicitly, or they may be *> postmultiplied into input matrices Q1 and Z1, so that *> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H *> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H *> If Q1 is the unitary matrix from the QR factorization of B in the *> original equation A*x = lambda*B*x, then ZGGHD3 reduces the original *> problem to generalized Hessenberg form. *> *> This is a blocked variant of CGGHRD, using matrix-matrix *> multiplications for parts of the computation to enhance performance. *> \endverbatim * * Arguments: * ========== * *> \param[in] COMPQ *> \verbatim *> COMPQ is CHARACTER*1 *> = 'N': do not compute Q; *> = 'I': Q is initialized to the unit matrix, and the *> unitary matrix Q is returned; *> = 'V': Q must contain a unitary matrix Q1 on entry, *> and the product Q1*Q is returned. *> \endverbatim *> *> \param[in] COMPZ *> \verbatim *> COMPZ is CHARACTER*1 *> = 'N': do not compute Z; *> = 'I': Z is initialized to the unit matrix, and the *> unitary matrix Z is returned; *> = 'V': Z must contain a unitary matrix Z1 on entry, *> and the product Z1*Z is returned. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> *> ILO and IHI mark the rows and columns of A which are to be *> reduced. It is assumed that A is already upper triangular *> in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are *> normally set by a previous call to ZGGBAL; otherwise they *> should be set to 1 and N respectively. *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the N-by-N general matrix to be reduced. *> On exit, the upper triangle and the first subdiagonal of A *> are overwritten with the upper Hessenberg matrix H, and the *> rest is set to zero. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, the N-by-N upper triangular matrix B. *> On exit, the upper triangular matrix T = Q**H B Z. The *> elements below the diagonal are set to zero. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ, N) *> On entry, if COMPQ = 'V', the unitary matrix Q1, typically *> from the QR factorization of B. *> On exit, if COMPQ='I', the unitary matrix Q, and if *> COMPQ = 'V', the product Q1*Q. *> Not referenced if COMPQ='N'. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. *> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ, N) *> On entry, if COMPZ = 'V', the unitary matrix Z1. *> On exit, if COMPZ='I', the unitary matrix Z, and if *> COMPZ = 'V', the product Z1*Z. *> Not referenced if COMPZ='N'. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. *> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. LWORK >= 1. *> For optimum performance LWORK >= 6*N*NB, where NB is the *> optimal blocksize. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gghd3 * *> \par Further Details: * ===================== *> *> \verbatim *> *> This routine reduces A to Hessenberg form and maintains B in triangular form *> using a blocked variant of Moler and Stewart's original algorithm, *> as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti *> (BIT 2008). *> \endverbatim *> * ===================================================================== SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, $ Q, $ LDQ, Z, LDZ, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * IMPLICIT NONE * * .. Scalar Arguments .. CHARACTER COMPQ, COMPZ INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CONE, CZERO PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ), $ CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ CHARACTER*1 COMPQ2, COMPZ2 INTEGER COLA, I, IERR, J, J0, JCOL, JJ, JROW, K, $ KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN, $ NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ DOUBLE PRECISION C COMPLEX*16 C1, C2, CTEMP, S, S1, S2, TEMP, TEMP1, TEMP2, $ TEMP3 * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL ILAENV, LSAME * .. * .. External Subroutines .. EXTERNAL ZGGHRD, ZLARTG, ZLASET, ZUNM22, ZROT, $ ZGEMM, $ ZGEMV, ZTRMV, ZLACPY, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, DCONJG, MAX * .. * .. Executable Statements .. * * Decode and test the input parameters. * INFO = 0 NB = ILAENV( 1, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN LWKOPT = 1 ELSE LWKOPT = 6*N*NB END IF WORK( 1 ) = DCMPLX( LWKOPT ) INITQ = LSAME( COMPQ, 'I' ) WANTQ = INITQ .OR. LSAME( COMPQ, 'V' ) INITZ = LSAME( COMPZ, 'I' ) WANTZ = INITZ .OR. LSAME( COMPZ, 'V' ) LQUERY = ( LWORK.EQ.-1 ) * IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN INFO = -1 ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( ILO.LT.1 ) THEN INFO = -4 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN INFO = -11 ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN INFO = -13 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -15 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGHD3', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Initialize Q and Z if desired. * IF( INITQ ) $ CALL ZLASET( 'All', N, N, CZERO, CONE, Q, LDQ ) IF( INITZ ) $ CALL ZLASET( 'All', N, N, CZERO, CONE, Z, LDZ ) * * Zero out lower triangle of B. * IF( N.GT.1 ) $ CALL ZLASET( 'Lower', N-1, N-1, CZERO, CZERO, B(2, 1), LDB ) * * Quick return if possible * IF( NH.LE.1 ) THEN WORK( 1 ) = CONE RETURN END IF * * Determine the blocksize. * NBMIN = ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) IF( NB.GT.1 .AND. NB.LT.NH ) THEN * * Determine when to use unblocked instead of blocked code. * NX = MAX( NB, ILAENV( 3, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) ) IF( NX.LT.NH ) THEN * * Determine if workspace is large enough for blocked code. * IF( LWORK.LT.LWKOPT ) THEN * * Not enough workspace to use optimal NB: determine the * minimum value of NB, and reduce NB or force use of * unblocked code. * NBMIN = MAX( 2, ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI, $ -1 ) ) IF( LWORK.GE.6*N*NBMIN ) THEN NB = LWORK / ( 6*N ) ELSE NB = 1 END IF END IF END IF END IF * IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN * * Use unblocked code below * JCOL = ILO * ELSE * * Use blocked code * KACC22 = ILAENV( 16, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) BLK22 = KACC22.EQ.2 DO JCOL = ILO, IHI-2, NB NNB = MIN( NB, IHI-JCOL-1 ) * * Initialize small unitary factors that will hold the * accumulated Givens rotations in workspace. * N2NB denotes the number of 2*NNB-by-2*NNB factors * NBLST denotes the (possibly smaller) order of the last * factor. * N2NB = ( IHI-JCOL-1 ) / NNB - 1 NBLST = IHI - JCOL - N2NB*NNB CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, $ NBLST ) PW = NBLST * NBLST + 1 DO I = 1, N2NB CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE, $ WORK( PW ), 2*NNB ) PW = PW + 4*NNB*NNB END DO * * Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form. * DO J = JCOL, JCOL+NNB-1 * * Reduce Jth column of A. Store cosines and sines in Jth * column of A and B, respectively. * DO I = IHI, J+2, -1 TEMP = A( I-1, J ) CALL ZLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) ) A( I, J ) = DCMPLX( C ) B( I, J ) = S END DO * * Accumulate Givens rotations into workspace array. * PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1 LEN = 2 + J - JCOL JROW = J + N2NB*NNB + 2 DO I = IHI, JROW, -1 CTEMP = A( I, J ) S = B( I, J ) DO JJ = PPW, PPW+LEN-1 TEMP = WORK( JJ + NBLST ) WORK( JJ + NBLST ) = CTEMP*TEMP - S*WORK( JJ ) WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ ) END DO LEN = LEN + 1 PPW = PPW - NBLST - 1 END DO * PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB J0 = JROW - NNB DO JROW = J0, J+2, -NNB PPW = PPWO LEN = 2 + J - JCOL DO I = JROW+NNB-1, JROW, -1 CTEMP = A( I, J ) S = B( I, J ) DO JJ = PPW, PPW+LEN-1 TEMP = WORK( JJ + 2*NNB ) WORK( JJ + 2*NNB ) = CTEMP*TEMP - S*WORK( JJ ) WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ ) END DO LEN = LEN + 1 PPW = PPW - 2*NNB - 1 END DO PPWO = PPWO + 4*NNB*NNB END DO * * TOP denotes the number of top rows in A and B that will * not be updated during the next steps. * IF( JCOL.LE.2 ) THEN TOP = 0 ELSE TOP = JCOL END IF * * Propagate transformations through B and replace stored * left sines/cosines by right sines/cosines. * DO JJ = N, J+1, -1 * * Update JJth column of B. * DO I = MIN( JJ+1, IHI ), J+2, -1 CTEMP = A( I, J ) S = B( I, J ) TEMP = B( I, JJ ) B( I, JJ ) = CTEMP*TEMP - DCONJG( S )*B( I-1, JJ ) B( I-1, JJ ) = S*TEMP + CTEMP*B( I-1, JJ ) END DO * * Annihilate B( JJ+1, JJ ). * IF( JJ.LT.IHI ) THEN TEMP = B( JJ+1, JJ+1 ) CALL ZLARTG( TEMP, B( JJ+1, JJ ), C, S, $ B( JJ+1, JJ+1 ) ) B( JJ+1, JJ ) = CZERO CALL ZROT( JJ-TOP, B( TOP+1, JJ+1 ), 1, $ B( TOP+1, JJ ), 1, C, S ) A( JJ+1, J ) = DCMPLX( C ) B( JJ+1, J ) = -DCONJG( S ) END IF END DO * * Update A by transformations from right. * JJ = MOD( IHI-J-1, 3 ) DO I = IHI-J-3, JJ+1, -3 CTEMP = A( J+1+I, J ) S = -B( J+1+I, J ) C1 = A( J+2+I, J ) S1 = -B( J+2+I, J ) C2 = A( J+3+I, J ) S2 = -B( J+3+I, J ) * DO K = TOP+1, IHI TEMP = A( K, J+I ) TEMP1 = A( K, J+I+1 ) TEMP2 = A( K, J+I+2 ) TEMP3 = A( K, J+I+3 ) A( K, J+I+3 ) = C2*TEMP3 + DCONJG( S2 )*TEMP2 TEMP2 = -S2*TEMP3 + C2*TEMP2 A( K, J+I+2 ) = C1*TEMP2 + DCONJG( S1 )*TEMP1 TEMP1 = -S1*TEMP2 + C1*TEMP1 A( K, J+I+1 ) = CTEMP*TEMP1 + DCONJG( S )*TEMP A( K, J+I ) = -S*TEMP1 + CTEMP*TEMP END DO END DO * IF( JJ.GT.0 ) THEN DO I = JJ, 1, -1 C = DBLE( A( J+1+I, J ) ) CALL ZROT( IHI-TOP, A( TOP+1, J+I+1 ), 1, $ A( TOP+1, J+I ), 1, C, $ -DCONJG( B( J+1+I, J ) ) ) END DO END IF * * Update (J+1)th column of A by transformations from left. * IF ( J .LT. JCOL + NNB - 1 ) THEN LEN = 1 + J - JCOL * * Multiply with the trailing accumulated unitary * matrix, which takes the form * * [ U11 U12 ] * U = [ ], * [ U21 U22 ] * * where U21 is a LEN-by-LEN matrix and U12 is lower * triangular. * JROW = IHI - NBLST + 1 CALL ZGEMV( 'Conjugate', NBLST, LEN, CONE, WORK, $ NBLST, A( JROW, J+1 ), 1, CZERO, $ WORK( PW ), 1 ) PPW = PW + LEN DO I = JROW, JROW+NBLST-LEN-1 WORK( PPW ) = A( I, J+1 ) PPW = PPW + 1 END DO CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit', $ NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST, $ WORK( PW+LEN ), 1 ) CALL ZGEMV( 'Conjugate', LEN, NBLST-LEN, CONE, $ WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST, $ A( JROW+NBLST-LEN, J+1 ), 1, CONE, $ WORK( PW+LEN ), 1 ) PPW = PW DO I = JROW, JROW+NBLST-1 A( I, J+1 ) = WORK( PPW ) PPW = PPW + 1 END DO * * Multiply with the other accumulated unitary * matrices, which take the form * * [ U11 U12 0 ] * [ ] * U = [ U21 U22 0 ], * [ ] * [ 0 0 I ] * * where I denotes the (NNB-LEN)-by-(NNB-LEN) identity * matrix, U21 is a LEN-by-LEN upper triangular matrix * and U12 is an NNB-by-NNB lower triangular matrix. * PPWO = 1 + NBLST*NBLST J0 = JROW - NNB DO JROW = J0, JCOL+1, -NNB PPW = PW + LEN DO I = JROW, JROW+NNB-1 WORK( PPW ) = A( I, J+1 ) PPW = PPW + 1 END DO PPW = PW DO I = JROW+NNB, JROW+NNB+LEN-1 WORK( PPW ) = A( I, J+1 ) PPW = PPW + 1 END DO CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', $ LEN, $ WORK( PPWO + NNB ), 2*NNB, WORK( PW ), $ 1 ) CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit', $ NNB, $ WORK( PPWO + 2*LEN*NNB ), $ 2*NNB, WORK( PW + LEN ), 1 ) CALL ZGEMV( 'Conjugate', NNB, LEN, CONE, $ WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1, $ CONE, WORK( PW ), 1 ) CALL ZGEMV( 'Conjugate', LEN, NNB, CONE, $ WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB, $ A( JROW+NNB, J+1 ), 1, CONE, $ WORK( PW+LEN ), 1 ) PPW = PW DO I = JROW, JROW+LEN+NNB-1 A( I, J+1 ) = WORK( PPW ) PPW = PPW + 1 END DO PPWO = PPWO + 4*NNB*NNB END DO END IF END DO * * Apply accumulated unitary matrices to A. * COLA = N - JCOL - NNB + 1 J = IHI - NBLST + 1 CALL ZGEMM( 'Conjugate', 'No Transpose', NBLST, $ COLA, NBLST, CONE, WORK, NBLST, $ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ), $ NBLST ) CALL ZLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST, $ A( J, JCOL+NNB ), LDA ) PPWO = NBLST*NBLST + 1 J0 = J - NNB DO J = J0, JCOL+1, -NNB IF ( BLK22 ) THEN * * Exploit the structure of * * [ U11 U12 ] * U = [ ] * [ U21 U22 ], * * where all blocks are NNB-by-NNB, U21 is upper * triangular and U12 is lower triangular. * CALL ZUNM22( 'Left', 'Conjugate', 2*NNB, COLA, NNB, $ NNB, WORK( PPWO ), 2*NNB, $ A( J, JCOL+NNB ), LDA, WORK( PW ), $ LWORK-PW+1, IERR ) ELSE * * Ignore the structure of U. * CALL ZGEMM( 'Conjugate', 'No Transpose', 2*NNB, $ COLA, 2*NNB, CONE, WORK( PPWO ), 2*NNB, $ A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ), $ 2*NNB ) CALL ZLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB, $ A( J, JCOL+NNB ), LDA ) END IF PPWO = PPWO + 4*NNB*NNB END DO * * Apply accumulated unitary matrices to Q. * IF( WANTQ ) THEN J = IHI - NBLST + 1 IF ( INITQ ) THEN TOPQ = MAX( 2, J - JCOL + 1 ) NH = IHI - TOPQ + 1 ELSE TOPQ = 1 NH = N END IF CALL ZGEMM( 'No Transpose', 'No Transpose', NH, $ NBLST, NBLST, CONE, Q( TOPQ, J ), LDQ, $ WORK, NBLST, CZERO, WORK( PW ), NH ) CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH, $ Q( TOPQ, J ), LDQ ) PPWO = NBLST*NBLST + 1 J0 = J - NNB DO J = J0, JCOL+1, -NNB IF ( INITQ ) THEN TOPQ = MAX( 2, J - JCOL + 1 ) NH = IHI - TOPQ + 1 END IF IF ( BLK22 ) THEN * * Exploit the structure of U. * CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB, $ NNB, NNB, WORK( PPWO ), 2*NNB, $ Q( TOPQ, J ), LDQ, WORK( PW ), $ LWORK-PW+1, IERR ) ELSE * * Ignore the structure of U. * CALL ZGEMM( 'No Transpose', 'No Transpose', NH, $ 2*NNB, 2*NNB, CONE, Q( TOPQ, J ), LDQ, $ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ), $ NH ) CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH, $ Q( TOPQ, J ), LDQ ) END IF PPWO = PPWO + 4*NNB*NNB END DO END IF * * Accumulate right Givens rotations if required. * IF ( WANTZ .OR. TOP.GT.0 ) THEN * * Initialize small unitary factors that will hold the * accumulated Givens rotations in workspace. * CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, $ NBLST ) PW = NBLST * NBLST + 1 DO I = 1, N2NB CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE, $ WORK( PW ), 2*NNB ) PW = PW + 4*NNB*NNB END DO * * Accumulate Givens rotations into workspace array. * DO J = JCOL, JCOL+NNB-1 PPW = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1 LEN = 2 + J - JCOL JROW = J + N2NB*NNB + 2 DO I = IHI, JROW, -1 CTEMP = A( I, J ) A( I, J ) = CZERO S = B( I, J ) B( I, J ) = CZERO DO JJ = PPW, PPW+LEN-1 TEMP = WORK( JJ + NBLST ) WORK( JJ + NBLST ) = CTEMP*TEMP - $ DCONJG( S )*WORK( JJ ) WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ ) END DO LEN = LEN + 1 PPW = PPW - NBLST - 1 END DO * PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB J0 = JROW - NNB DO JROW = J0, J+2, -NNB PPW = PPWO LEN = 2 + J - JCOL DO I = JROW+NNB-1, JROW, -1 CTEMP = A( I, J ) A( I, J ) = CZERO S = B( I, J ) B( I, J ) = CZERO DO JJ = PPW, PPW+LEN-1 TEMP = WORK( JJ + 2*NNB ) WORK( JJ + 2*NNB ) = CTEMP*TEMP - $ DCONJG( S )*WORK( JJ ) WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ ) END DO LEN = LEN + 1 PPW = PPW - 2*NNB - 1 END DO PPWO = PPWO + 4*NNB*NNB END DO END DO ELSE * CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, $ CZERO, $ A( JCOL + 2, JCOL ), LDA ) CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, $ CZERO, $ B( JCOL + 2, JCOL ), LDB ) END IF * * Apply accumulated unitary matrices to A and B. * IF ( TOP.GT.0 ) THEN J = IHI - NBLST + 1 CALL ZGEMM( 'No Transpose', 'No Transpose', TOP, $ NBLST, NBLST, CONE, A( 1, J ), LDA, $ WORK, NBLST, CZERO, WORK( PW ), TOP ) CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP, $ A( 1, J ), LDA ) PPWO = NBLST*NBLST + 1 J0 = J - NNB DO J = J0, JCOL+1, -NNB IF ( BLK22 ) THEN * * Exploit the structure of U. * CALL ZUNM22( 'Right', 'No Transpose', TOP, $ 2*NNB, $ NNB, NNB, WORK( PPWO ), 2*NNB, $ A( 1, J ), LDA, WORK( PW ), $ LWORK-PW+1, IERR ) ELSE * * Ignore the structure of U. * CALL ZGEMM( 'No Transpose', 'No Transpose', TOP, $ 2*NNB, 2*NNB, CONE, A( 1, J ), LDA, $ WORK( PPWO ), 2*NNB, CZERO, $ WORK( PW ), TOP ) CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP, $ A( 1, J ), LDA ) END IF PPWO = PPWO + 4*NNB*NNB END DO * J = IHI - NBLST + 1 CALL ZGEMM( 'No Transpose', 'No Transpose', TOP, $ NBLST, NBLST, CONE, B( 1, J ), LDB, $ WORK, NBLST, CZERO, WORK( PW ), TOP ) CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP, $ B( 1, J ), LDB ) PPWO = NBLST*NBLST + 1 J0 = J - NNB DO J = J0, JCOL+1, -NNB IF ( BLK22 ) THEN * * Exploit the structure of U. * CALL ZUNM22( 'Right', 'No Transpose', TOP, $ 2*NNB, $ NNB, NNB, WORK( PPWO ), 2*NNB, $ B( 1, J ), LDB, WORK( PW ), $ LWORK-PW+1, IERR ) ELSE * * Ignore the structure of U. * CALL ZGEMM( 'No Transpose', 'No Transpose', TOP, $ 2*NNB, 2*NNB, CONE, B( 1, J ), LDB, $ WORK( PPWO ), 2*NNB, CZERO, $ WORK( PW ), TOP ) CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP, $ B( 1, J ), LDB ) END IF PPWO = PPWO + 4*NNB*NNB END DO END IF * * Apply accumulated unitary matrices to Z. * IF( WANTZ ) THEN J = IHI - NBLST + 1 IF ( INITQ ) THEN TOPQ = MAX( 2, J - JCOL + 1 ) NH = IHI - TOPQ + 1 ELSE TOPQ = 1 NH = N END IF CALL ZGEMM( 'No Transpose', 'No Transpose', NH, $ NBLST, NBLST, CONE, Z( TOPQ, J ), LDZ, $ WORK, NBLST, CZERO, WORK( PW ), NH ) CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH, $ Z( TOPQ, J ), LDZ ) PPWO = NBLST*NBLST + 1 J0 = J - NNB DO J = J0, JCOL+1, -NNB IF ( INITQ ) THEN TOPQ = MAX( 2, J - JCOL + 1 ) NH = IHI - TOPQ + 1 END IF IF ( BLK22 ) THEN * * Exploit the structure of U. * CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB, $ NNB, NNB, WORK( PPWO ), 2*NNB, $ Z( TOPQ, J ), LDZ, WORK( PW ), $ LWORK-PW+1, IERR ) ELSE * * Ignore the structure of U. * CALL ZGEMM( 'No Transpose', 'No Transpose', NH, $ 2*NNB, 2*NNB, CONE, Z( TOPQ, J ), LDZ, $ WORK( PPWO ), 2*NNB, CZERO, WORK( PW ), $ NH ) CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH, $ Z( TOPQ, J ), LDZ ) END IF PPWO = PPWO + 4*NNB*NNB END DO END IF END DO END IF * * Use unblocked code to reduce the rest of the matrix * Avoid re-initialization of modified Q and Z. * COMPQ2 = COMPQ COMPZ2 = COMPZ IF ( JCOL.NE.ILO ) THEN IF ( WANTQ ) $ COMPQ2 = 'V' IF ( WANTZ ) $ COMPZ2 = 'V' END IF * IF ( JCOL.LT.IHI ) $ CALL ZGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, $ Q, $ LDQ, Z, LDZ, IERR ) * WORK( 1 ) = DCMPLX( LWKOPT ) * RETURN * * End of ZGGHD3 * END