numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zgtcon.f | 6854B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
*> \brief \b ZGTCON * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZGTCON + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtcon.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtcon.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtcon.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, * WORK, INFO ) * * .. Scalar Arguments .. * CHARACTER NORM * INTEGER INFO, N * DOUBLE PRECISION ANORM, RCOND * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZGTCON estimates the reciprocal of the condition number of a complex *> tridiagonal matrix A using the LU factorization as computed by *> ZGTTRF. *> *> An estimate is obtained for norm(inv(A)), and the reciprocal of the *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). *> \endverbatim * * Arguments: * ========== * *> \param[in] NORM *> \verbatim *> NORM is CHARACTER*1 *> Specifies whether the 1-norm condition number or the *> infinity-norm condition number is required: *> = '1' or 'O': 1-norm; *> = 'I': Infinity-norm. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] DL *> \verbatim *> DL is COMPLEX*16 array, dimension (N-1) *> The (n-1) multipliers that define the matrix L from the *> LU factorization of A as computed by ZGTTRF. *> \endverbatim *> *> \param[in] D *> \verbatim *> D is COMPLEX*16 array, dimension (N) *> The n diagonal elements of the upper triangular matrix U from *> the LU factorization of A. *> \endverbatim *> *> \param[in] DU *> \verbatim *> DU is COMPLEX*16 array, dimension (N-1) *> The (n-1) elements of the first superdiagonal of U. *> \endverbatim *> *> \param[in] DU2 *> \verbatim *> DU2 is COMPLEX*16 array, dimension (N-2) *> The (n-2) elements of the second superdiagonal of U. *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> The pivot indices; for 1 <= i <= n, row i of the matrix was *> interchanged with row IPIV(i). IPIV(i) will always be either *> i or i+1; IPIV(i) = i indicates a row interchange was not *> required. *> \endverbatim *> *> \param[in] ANORM *> \verbatim *> ANORM is DOUBLE PRECISION *> If NORM = '1' or 'O', the 1-norm of the original matrix A. *> If NORM = 'I', the infinity-norm of the original matrix A. *> \endverbatim *> *> \param[out] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> The reciprocal of the condition number of the matrix A, *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an *> estimate of the 1-norm of inv(A) computed in this routine. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (2*N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup gtcon * * ===================================================================== SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, $ WORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER NORM INTEGER INFO, N DOUBLE PRECISION ANORM, RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 D( * ), DL( * ), DU( * ), DU2( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL ONENRM INTEGER I, KASE, KASE1 DOUBLE PRECISION AINVNM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGTTRS, ZLACN2 * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. * .. Executable Statements .. * * Test the input arguments. * INFO = 0 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( ANORM.LT.ZERO ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGTCON', -INFO ) RETURN END IF * * Quick return if possible * RCOND = ZERO IF( N.EQ.0 ) THEN RCOND = ONE RETURN ELSE IF( ANORM.EQ.ZERO ) THEN RETURN END IF * * Check that D(1:N) is non-zero. * DO 10 I = 1, N IF( D( I ).EQ.DCMPLX( ZERO ) ) $ RETURN 10 CONTINUE * AINVNM = ZERO IF( ONENRM ) THEN KASE1 = 1 ELSE KASE1 = 2 END IF KASE = 0 20 CONTINUE CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.KASE1 ) THEN * * Multiply by inv(U)*inv(L). * CALL ZGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV, $ WORK, N, INFO ) ELSE * * Multiply by inv(L**H)*inv(U**H). * CALL ZGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2, $ IPIV, WORK, N, INFO ) END IF GO TO 20 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM.NE.ZERO ) $ RCOND = ( ONE / AINVNM ) / ANORM * RETURN * * End of ZGTCON * END