numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zheevr_2stage.f | 28731B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
*> \brief <b> ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b> * * @precisions fortran z -> s d c * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZHEEVR_2STAGE + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr_2stage.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr_2stage.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr_2stage.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, * WORK, LWORK, RWORK, LRWORK, IWORK, * LIWORK, INFO ) * * IMPLICIT NONE * * .. Scalar Arguments .. * CHARACTER JOBZ, RANGE, UPLO * INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK, * $ M, N * DOUBLE PRECISION ABSTOL, VL, VU * .. * .. Array Arguments .. * INTEGER ISUPPZ( * ), IWORK( * ) * DOUBLE PRECISION RWORK( * ), W( * ) * COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZHEEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors *> of a complex Hermitian matrix A using the 2stage technique for *> the reduction to tridiagonal. Eigenvalues and eigenvectors can *> be selected by specifying either a range of values or a range of *> indices for the desired eigenvalues. *> *> ZHEEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call *> to ZHETRD. Then, whenever possible, ZHEEVR_2STAGE calls ZSTEMR to compute *> eigenspectrum using Relatively Robust Representations. ZSTEMR *> computes eigenvalues by the dqds algorithm, while orthogonal *> eigenvectors are computed from various "good" L D L^T representations *> (also known as Relatively Robust Representations). Gram-Schmidt *> orthogonalization is avoided as far as possible. More specifically, *> the various steps of the algorithm are as follows. *> *> For each unreduced block (submatrix) of T, *> (a) Compute T - sigma I = L D L^T, so that L and D *> define all the wanted eigenvalues to high relative accuracy. *> This means that small relative changes in the entries of D and L *> cause only small relative changes in the eigenvalues and *> eigenvectors. The standard (unfactored) representation of the *> tridiagonal matrix T does not have this property in general. *> (b) Compute the eigenvalues to suitable accuracy. *> If the eigenvectors are desired, the algorithm attains full *> accuracy of the computed eigenvalues only right before *> the corresponding vectors have to be computed, see steps c) and d). *> (c) For each cluster of close eigenvalues, select a new *> shift close to the cluster, find a new factorization, and refine *> the shifted eigenvalues to suitable accuracy. *> (d) For each eigenvalue with a large enough relative separation compute *> the corresponding eigenvector by forming a rank revealing twisted *> factorization. Go back to (c) for any clusters that remain. *> *> The desired accuracy of the output can be specified by the input *> parameter ABSTOL. *> *> For more details, see ZSTEMR's documentation and: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations *> to compute orthogonal eigenvectors of symmetric tridiagonal matrices," *> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and *> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, *> 2004. Also LAPACK Working Note 154. *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric *> tridiagonal eigenvalue/eigenvector problem", *> Computer Science Division Technical Report No. UCB/CSD-97-971, *> UC Berkeley, May 1997. *> *> *> Note 1 : ZHEEVR_2STAGE calls ZSTEMR when the full spectrum is requested *> on machines which conform to the ieee-754 floating point standard. *> ZHEEVR_2STAGE calls DSTEBZ and ZSTEIN on non-ieee machines and *> when partial spectrum requests are made. *> *> Normal execution of ZSTEMR may create NaNs and infinities and *> hence may abort due to a floating point exception in environments *> which do not handle NaNs and infinities in the ieee standard default *> manner. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBZ *> \verbatim *> JOBZ is CHARACTER*1 *> = 'N': Compute eigenvalues only; *> = 'V': Compute eigenvalues and eigenvectors. *> Not available in this release. *> \endverbatim *> *> \param[in] RANGE *> \verbatim *> RANGE is CHARACTER*1 *> = 'A': all eigenvalues will be found. *> = 'V': all eigenvalues in the half-open interval (VL,VU] *> will be found. *> = 'I': the IL-th through IU-th eigenvalues will be found. *> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and *> ZSTEIN are called *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the Hermitian matrix A. If UPLO = 'U', the *> leading N-by-N upper triangular part of A contains the *> upper triangular part of the matrix A. If UPLO = 'L', *> the leading N-by-N lower triangular part of A contains *> the lower triangular part of the matrix A. *> On exit, the lower triangle (if UPLO='L') or the upper *> triangle (if UPLO='U') of A, including the diagonal, is *> destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] VL *> \verbatim *> VL is DOUBLE PRECISION *> If RANGE='V', the lower bound of the interval to *> be searched for eigenvalues. VL < VU. *> Not referenced if RANGE = 'A' or 'I'. *> \endverbatim *> *> \param[in] VU *> \verbatim *> VU is DOUBLE PRECISION *> If RANGE='V', the upper bound of the interval to *> be searched for eigenvalues. VL < VU. *> Not referenced if RANGE = 'A' or 'I'. *> \endverbatim *> *> \param[in] IL *> \verbatim *> IL is INTEGER *> If RANGE='I', the index of the *> smallest eigenvalue to be returned. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *> Not referenced if RANGE = 'A' or 'V'. *> \endverbatim *> *> \param[in] IU *> \verbatim *> IU is INTEGER *> If RANGE='I', the index of the *> largest eigenvalue to be returned. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. *> Not referenced if RANGE = 'A' or 'V'. *> \endverbatim *> *> \param[in] ABSTOL *> \verbatim *> ABSTOL is DOUBLE PRECISION *> The absolute error tolerance for the eigenvalues. *> An approximate eigenvalue is accepted as converged *> when it is determined to lie in an interval [a,b] *> of width less than or equal to *> *> ABSTOL + EPS * max( |a|,|b| ) , *> *> where EPS is the machine precision. If ABSTOL is less than *> or equal to zero, then EPS*|T| will be used in its place, *> where |T| is the 1-norm of the tridiagonal matrix obtained *> by reducing A to tridiagonal form. *> *> See "Computing Small Singular Values of Bidiagonal Matrices *> with Guaranteed High Relative Accuracy," by Demmel and *> Kahan, LAPACK Working Note #3. *> *> If high relative accuracy is important, set ABSTOL to *> DLAMCH( 'Safe minimum' ). Doing so will guarantee that *> eigenvalues are computed to high relative accuracy when *> possible in future releases. The current code does not *> make any guarantees about high relative accuracy, but *> future releases will. See J. Barlow and J. Demmel, *> "Computing Accurate Eigensystems of Scaled Diagonally *> Dominant Matrices", LAPACK Working Note #7, for a discussion *> of which matrices define their eigenvalues to high relative *> accuracy. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The total number of eigenvalues found. 0 <= M <= N. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *> \endverbatim *> *> \param[out] W *> \verbatim *> W is DOUBLE PRECISION array, dimension (N) *> The first M elements contain the selected eigenvalues in *> ascending order. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M)) *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z *> contain the orthonormal eigenvectors of the matrix A *> corresponding to the selected eigenvalues, with the i-th *> column of Z holding the eigenvector associated with W(i). *> If JOBZ = 'N', then Z is not referenced. *> Note: the user must ensure that at least max(1,M) columns are *> supplied in the array Z; if RANGE = 'V', the exact value of M *> is not known in advance and an upper bound must be used. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1, and if *> JOBZ = 'V', LDZ >= max(1,N). *> \endverbatim *> *> \param[out] ISUPPZ *> \verbatim *> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) *> The support of the eigenvectors in Z, i.e., the indices *> indicating the nonzero elements in Z. The i-th eigenvector *> is nonzero only in elements ISUPPZ( 2*i-1 ) through *> ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal *> matrix). The support of the eigenvectors of A is typically *> 1:N because of the unitary transformations applied by ZUNMTR. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If N <= 1, LWORK must be at least 1. *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, 26*N, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + N *> = N*KD + N*max(KD+1,FACTOPTNB) *> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice *> NTHREADS is the number of threads used when *> openMP compilation is enabled, otherwise =1. *> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal sizes of the WORK, RWORK and *> IWORK arrays, returns these values as the first entries of *> the WORK, RWORK and IWORK arrays, and no error message *> related to LWORK or LRWORK or LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) *> On exit, if INFO = 0, RWORK(1) returns the optimal *> (and minimal) LRWORK. *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER *> The length of the array RWORK. *> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N. *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK *> and IWORK arrays, returns these values as the first entries *> of the WORK, RWORK and IWORK arrays, and no error message *> related to LWORK or LRWORK or LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) *> On exit, if INFO = 0, IWORK(1) returns the optimal *> (and minimal) LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER *> The dimension of the array IWORK. *> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK *> and IWORK arrays, returns these values as the first entries *> of the WORK, RWORK and IWORK arrays, and no error message *> related to LWORK or LRWORK or LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: Internal error *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup heevr_2stage * *> \par Contributors: * ================== *> *> Inderjit Dhillon, IBM Almaden, USA \n *> Osni Marques, LBNL/NERSC, USA \n *> Ken Stanley, Computer Science Division, University of *> California at Berkeley, USA \n *> Jason Riedy, Computer Science Division, University of *> California at Berkeley, USA \n *> *> \par Further Details: * ===================== *> *> \verbatim *> *> All details about the 2stage techniques are available in: *> *> Azzam Haidar, Hatem Ltaief, and Jack Dongarra. *> Parallel reduction to condensed forms for symmetric eigenvalue problems *> using aggregated fine-grained and memory-aware kernels. In Proceedings *> of 2011 International Conference for High Performance Computing, *> Networking, Storage and Analysis (SC '11), New York, NY, USA, *> Article 8 , 11 pages. *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. *> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. *> Article 90, 12 pages. *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. *> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. *> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * * ===================================================================== SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, $ IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, $ WORK, LWORK, RWORK, LRWORK, IWORK, $ LIWORK, INFO ) * IMPLICIT NONE * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER JOBZ, RANGE, UPLO INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK, $ M, N DOUBLE PRECISION ABSTOL, VL, VU * .. * .. Array Arguments .. INTEGER ISUPPZ( * ), IWORK( * ) DOUBLE PRECISION RWORK( * ), W( * ) COMPLEX*16 A( LDA, * ), WORK( * ), Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) * .. * .. Local Scalars .. LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG, $ WANTZ, TRYRAC CHARACTER ORDER INTEGER I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP, $ INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK, $ INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ, $ LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN, $ LWMIN, NSPLIT, LHTRD, LWTRD, KD, IB, INDHOUS DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, $ SIGMA, SMLNUM, TMP1, VLL, VUU * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV, ILAENV2STAGE DOUBLE PRECISION DLAMCH, ZLANSY EXTERNAL LSAME, DLAMCH, ZLANSY, ILAENV, $ ILAENV2STAGE * .. * .. External Subroutines .. EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, $ ZDSCAL, $ ZHETRD_2STAGE, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 ) * LOWER = LSAME( UPLO, 'L' ) WANTZ = LSAME( JOBZ, 'V' ) ALLEIG = LSAME( RANGE, 'A' ) VALEIG = LSAME( RANGE, 'V' ) INDEIG = LSAME( RANGE, 'I' ) * LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR. $ ( LIWORK.EQ.-1 ) ) * KD = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, $ -1 ) IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, $ -1 ) LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, $ -1 ) LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, $ -1 ) * IF( N.LE.1 ) THEN LWMIN = 1 LRWMIN = 1 LIWMIN = 1 ELSE LWMIN = N + LHTRD + LWTRD LRWMIN = 24*N LIWMIN = 10*N END IF * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN INFO = -2 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( VALEIG ) THEN IF( N.GT.0 .AND. VU.LE.VL ) $ INFO = -8 ELSE IF( INDEIG ) THEN IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN INFO = -10 END IF END IF END IF IF( INFO.EQ.0 ) THEN IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -15 END IF END IF * IF( INFO.EQ.0 ) THEN WORK( 1 ) = LWMIN RWORK( 1 ) = REAL( LRWMIN ) IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -18 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN INFO = -20 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN INFO = -22 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHEEVR_2STAGE', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * M = 0 IF( N.EQ.0 ) THEN WORK( 1 ) = 1 RETURN END IF * IF( N.EQ.1 ) THEN WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = DBLE( A( 1, 1 ) ) ELSE IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) ) $ THEN M = 1 W( 1 ) = DBLE( A( 1, 1 ) ) END IF END IF IF( WANTZ ) THEN Z( 1, 1 ) = ONE ISUPPZ( 1 ) = 1 ISUPPZ( 2 ) = 1 END IF RETURN END IF * * Get machine constants. * SAFMIN = DLAMCH( 'Safe minimum' ) EPS = DLAMCH( 'Precision' ) SMLNUM = SAFMIN / EPS BIGNUM = ONE / SMLNUM RMIN = SQRT( SMLNUM ) RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) ) * * Scale matrix to allowable range, if necessary. * ISCALE = 0 ABSTLL = ABSTOL IF (VALEIG) THEN VLL = VL VUU = VU END IF ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK ) IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN ISCALE = 1 SIGMA = RMIN / ANRM ELSE IF( ANRM.GT.RMAX ) THEN ISCALE = 1 SIGMA = RMAX / ANRM END IF IF( ISCALE.EQ.1 ) THEN IF( LOWER ) THEN DO 10 J = 1, N CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 ) 10 CONTINUE ELSE DO 20 J = 1, N CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 ) 20 CONTINUE END IF IF( ABSTOL.GT.0 ) $ ABSTLL = ABSTOL*SIGMA IF( VALEIG ) THEN VLL = VL*SIGMA VUU = VU*SIGMA END IF END IF * Initialize indices into workspaces. Note: The IWORK indices are * used only if DSTERF or ZSTEMR fail. * WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the * elementary reflectors used in ZHETRD. INDTAU = 1 * INDWK is the starting offset of the remaining complex workspace, * and LLWORK is the remaining complex workspace size. INDHOUS = INDTAU + N INDWK = INDHOUS + LHTRD LLWORK = LWORK - INDWK + 1 * RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal * entries. INDRD = 1 * RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the * tridiagonal matrix from ZHETRD. INDRE = INDRD + N * RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over * -written by ZSTEMR (the DSTERF path copies the diagonal to W). INDRDD = INDRE + N * RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over * -written while computing the eigenvalues in DSTERF and ZSTEMR. INDREE = INDRDD + N * INDRWK is the starting offset of the left-over real workspace, and * LLRWORK is the remaining workspace size. INDRWK = INDREE + N LLRWORK = LRWORK - INDRWK + 1 * IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and * stores the block indices of each of the M<=N eigenvalues. INDIBL = 1 * IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and * stores the starting and finishing indices of each block. INDISP = INDIBL + N * IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors * that corresponding to eigenvectors that fail to converge in * ZSTEIN. This information is discarded; if any fail, the driver * returns INFO > 0. INDIFL = INDISP + N * INDIWO is the offset of the remaining integer workspace. INDIWO = INDIFL + N * * Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form. * CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), $ RWORK( INDRE ), WORK( INDTAU ), $ WORK( INDHOUS ), LHTRD, $ WORK( INDWK ), LLWORK, IINFO ) * * If all eigenvalues are desired * then call DSTERF or ZSTEMR and ZUNMTR. * TEST = .FALSE. IF( INDEIG ) THEN IF( IL.EQ.1 .AND. IU.EQ.N ) THEN TEST = .TRUE. END IF END IF IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN IF( .NOT.WANTZ ) THEN CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 ) CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 ) CALL DSTERF( N, W, RWORK( INDREE ), INFO ) ELSE CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 ) CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 ) * IF (ABSTOL .LE. TWO*N*EPS) THEN TRYRAC = .TRUE. ELSE TRYRAC = .FALSE. END IF CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ), $ RWORK( INDREE ), VL, VU, IL, IU, M, W, $ Z, LDZ, N, ISUPPZ, TRYRAC, $ RWORK( INDRWK ), LLRWORK, $ IWORK, LIWORK, INFO ) * * Apply unitary matrix used in reduction to tridiagonal * form to eigenvectors returned by ZSTEMR. * IF( WANTZ .AND. INFO.EQ.0 ) THEN INDWKN = INDWK LLWRKN = LWORK - INDWKN + 1 CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, $ WORK( INDTAU ), Z, LDZ, WORK( INDWKN ), $ LLWRKN, IINFO ) END IF END IF * * IF( INFO.EQ.0 ) THEN M = N GO TO 30 END IF INFO = 0 END IF * * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. * Also call DSTEBZ and ZSTEIN if ZSTEMR fails. * IF( WANTZ ) THEN ORDER = 'B' ELSE ORDER = 'E' END IF CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL, $ RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W, $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ), $ IWORK( INDIWO ), INFO ) * IF( WANTZ ) THEN CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W, $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ, $ RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ), $ INFO ) * * Apply unitary matrix used in reduction to tridiagonal * form to eigenvectors returned by ZSTEIN. * INDWKN = INDWK LLWRKN = LWORK - INDWKN + 1 CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), $ Z, $ LDZ, WORK( INDWKN ), LLWRKN, IINFO ) END IF * * If matrix was scaled, then rescale eigenvalues appropriately. * 30 CONTINUE IF( ISCALE.EQ.1 ) THEN IF( INFO.EQ.0 ) THEN IMAX = M ELSE IMAX = INFO - 1 END IF CALL DSCAL( IMAX, ONE / SIGMA, W, 1 ) END IF * * If eigenvalues are not in order, then sort them, along with * eigenvectors. * IF( WANTZ ) THEN DO 50 J = 1, M - 1 I = 0 TMP1 = W( J ) DO 40 JJ = J + 1, M IF( W( JJ ).LT.TMP1 ) THEN I = JJ TMP1 = W( JJ ) END IF 40 CONTINUE * IF( I.NE.0 ) THEN ITMP1 = IWORK( INDIBL+I-1 ) W( I ) = W( J ) IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 ) W( J ) = TMP1 IWORK( INDIBL+J-1 ) = ITMP1 CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 ) END IF 50 CONTINUE END IF * * Set WORK(1) to optimal workspace size. * WORK( 1 ) = LWMIN RWORK( 1 ) = REAL( LRWMIN ) IWORK( 1 ) = LIWMIN * RETURN * * End of ZHEEVR_2STAGE * END