numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zhesv_aa.f | 7852B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
*> \brief <b> ZHESV_AA computes the solution to system of linear equations A * X = B for HE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZHESV_AA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesv_aa.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesv_aa.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesv_aa.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, LDB, LWORK, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZHESV_AA computes the solution to a complex system of linear equations *> A * X = B, *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS *> matrices. *> *> Aasen's algorithm is used to factor A as *> A = U**H * T * U, if UPLO = 'U', or *> A = L * T * L**H, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and T is Hermitian and tridiagonal. The factored form *> of A is then used to solve the system of equations A * X = B. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading *> N-by-N upper triangular part of A contains the upper *> triangular part of the matrix A, and the strictly lower *> triangular part of A is not referenced. If UPLO = 'L', the *> leading N-by-N lower triangular part of A contains the lower *> triangular part of the matrix A, and the strictly upper *> triangular part of A is not referenced. *> *> On exit, if INFO = 0, the tridiagonal matrix T and the *> multipliers used to obtain the factor U or L from the *> factorization A = U**H*T*U or A = L*T*L**H as computed by *> ZHETRF_AA. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> On exit, it contains the details of the interchanges, i.e., *> the row and column k of A were interchanged with the *> row and column IPIV(k). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> On entry, the N-by-NRHS right hand side matrix B. *> On exit, if INFO = 0, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of WORK. LWORK >= MAX(1,2*N,3*N-2), and for best *> performance LWORK >= max(1,N*NB), where NB is the optimal *> blocksize for ZHETRF_AA. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization *> has been completed, but the block diagonal matrix D is *> exactly singular, so the solution could not be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hesv_aa * * ===================================================================== SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ LWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDB, LWORK, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LWKMIN, LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL XERBLA, ZHETRF_AA, ZHETRS_AA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) LWKMIN = MAX( 1, 2*N, 3*N-2 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. $ .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN CALL ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) LWKOPT_HETRF = INT( WORK( 1 ) ) CALL ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ -1, INFO ) LWKOPT_HETRS = INT( WORK( 1 ) ) LWKOPT = MAX( LWKMIN, LWKOPT_HETRF, LWKOPT_HETRS ) WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHESV_AA ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Compute the factorization A = U**H*T*U or A = L*T*L**H. * CALL ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) IF( INFO.EQ.0 ) THEN * * Solve the system A*X = B, overwriting B with X. * CALL ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ LWORK, INFO ) * END IF * WORK( 1 ) = LWKOPT * RETURN * * End of ZHESV_AA * END