numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zhesvx.f | 14343B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
*> \brief <b> ZHESVX computes the solution to system of linear equations A * X = B for HE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZHESVX + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesvx.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesvx.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesvx.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, * LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, * RWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER FACT, UPLO * INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS * DOUBLE PRECISION RCOND * .. * .. Array Arguments .. * INTEGER IPIV( * ) * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), * $ WORK( * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZHESVX uses the diagonal pivoting factorization to compute the *> solution to a complex system of linear equations A * X = B, *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS *> matrices. *> *> Error bounds on the solution and a condition estimate are also *> provided. *> \endverbatim * *> \par Description: * ================= *> *> \verbatim *> *> The following steps are performed: *> *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A. *> The form of the factorization is *> A = U * D * U**H, if UPLO = 'U', or *> A = L * D * L**H, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, and D is Hermitian and block diagonal with *> 1-by-1 and 2-by-2 diagonal blocks. *> *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine *> returns with INFO = i. Otherwise, the factored form of A is used *> to estimate the condition number of the matrix A. If the *> reciprocal of the condition number is less than machine precision, *> INFO = N+1 is returned as a warning, but the routine still goes on *> to solve for X and compute error bounds as described below. *> *> 3. The system of equations is solved for X using the factored form *> of A. *> *> 4. Iterative refinement is applied to improve the computed solution *> matrix and calculate error bounds and backward error estimates *> for it. *> \endverbatim * * Arguments: * ========== * *> \param[in] FACT *> \verbatim *> FACT is CHARACTER*1 *> Specifies whether or not the factored form of A has been *> supplied on entry. *> = 'F': On entry, AF and IPIV contain the factored form *> of A. A, AF and IPIV will not be modified. *> = 'N': The matrix A will be copied to AF and factored. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices B and X. NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The Hermitian matrix A. If UPLO = 'U', the leading N-by-N *> upper triangular part of A contains the upper triangular part *> of the matrix A, and the strictly lower triangular part of A *> is not referenced. If UPLO = 'L', the leading N-by-N lower *> triangular part of A contains the lower triangular part of *> the matrix A, and the strictly upper triangular part of A is *> not referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] AF *> \verbatim *> AF is COMPLEX*16 array, dimension (LDAF,N) *> If FACT = 'F', then AF is an input argument and on entry *> contains the block diagonal matrix D and the multipliers used *> to obtain the factor U or L from the factorization *> A = U*D*U**H or A = L*D*L**H as computed by ZHETRF. *> *> If FACT = 'N', then AF is an output argument and on exit *> returns the block diagonal matrix D and the multipliers used *> to obtain the factor U or L from the factorization *> A = U*D*U**H or A = L*D*L**H. *> \endverbatim *> *> \param[in] LDAF *> \verbatim *> LDAF is INTEGER *> The leading dimension of the array AF. LDAF >= max(1,N). *> \endverbatim *> *> \param[in,out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> If FACT = 'F', then IPIV is an input argument and on entry *> contains details of the interchanges and the block structure *> of D, as determined by ZHETRF. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were *> interchanged and D(k,k) is a 1-by-1 diagonal block. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *> *> If FACT = 'N', then IPIV is an output argument and on exit *> contains details of the interchanges and the block structure *> of D, as determined by ZHETRF. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> The N-by-NRHS right hand side matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (LDX,NRHS) *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. LDX >= max(1,N). *> \endverbatim *> *> \param[out] RCOND *> \verbatim *> RCOND is DOUBLE PRECISION *> The estimate of the reciprocal condition number of the matrix *> A. If RCOND is less than the machine precision (in *> particular, if RCOND = 0), the matrix is singular to working *> precision. This condition is indicated by a return code of *> INFO > 0. *> \endverbatim *> *> \param[out] FERR *> \verbatim *> FERR is DOUBLE PRECISION array, dimension (NRHS) *> The estimated forward error bound for each solution vector *> X(j) (the j-th column of the solution matrix X). *> If XTRUE is the true solution corresponding to X(j), FERR(j) *> is an estimated upper bound for the magnitude of the largest *> element in (X(j) - XTRUE) divided by the magnitude of the *> largest element in X(j). The estimate is as reliable as *> the estimate for RCOND, and is almost always a slight *> overestimate of the true error. *> \endverbatim *> *> \param[out] BERR *> \verbatim *> BERR is DOUBLE PRECISION array, dimension (NRHS) *> The componentwise relative backward error of each solution *> vector X(j) (i.e., the smallest relative change in *> any element of A or B that makes X(j) an exact solution). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of WORK. LWORK >= MAX(1,2*N), and for best *> performance, when FACT = 'N', LWORK >= MAX(1,2*N,N*NB), where *> NB is the optimal blocksize for ZHETRF. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, and i is *> <= N: D(i,i) is exactly zero. The factorization *> has been completed but the factor D is exactly *> singular, so the solution and error bounds could *> not be computed. RCOND = 0 is returned. *> = N+1: D is nonsingular, but RCOND is less than machine *> precision, meaning that the matrix is singular *> to working precision. Nevertheless, the *> solution and error bounds are computed because *> there are a number of situations where the *> computed solution can be more accurate than the *> value of RCOND would suggest. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hesvx * * ===================================================================== SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, $ B, $ LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, $ RWORK, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER FACT, UPLO INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS DOUBLE PRECISION RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ), $ WORK( * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, NOFACT INTEGER LWKOPT, LWKMIN, NB DOUBLE PRECISION ANORM * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, ZLANHE EXTERNAL LSAME, ILAENV, DLAMCH, ZLANHE * .. * .. External Subroutines .. EXTERNAL XERBLA, ZHECON, ZHERFS, ZHETRF, ZHETRS, $ ZLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NOFACT = LSAME( FACT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) LWKMIN = MAX( 1, 2*N ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. $ .NOT.LSAME( UPLO, 'L' ) ) $ THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -11 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -13 ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * IF( INFO.EQ.0 ) THEN LWKOPT = LWKMIN IF( NOFACT ) THEN NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( LWKOPT, N*NB ) END IF WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHESVX', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * IF( NOFACT ) THEN * * Compute the factorization A = U*D*U**H or A = L*D*L**H. * CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF ) CALL ZHETRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO ) * * Return if INFO is non-zero. * IF( INFO.GT.0 )THEN RCOND = ZERO RETURN END IF END IF * * Compute the norm of the matrix A. * ANORM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK ) * * Compute the reciprocal of the condition number of A. * CALL ZHECON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, $ INFO ) * * Compute the solution vectors X. * CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) CALL ZHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) * * Use iterative refinement to improve the computed solutions and * compute error bounds and backward error estimates for them. * CALL ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, $ LDX, FERR, BERR, WORK, RWORK, INFO ) * * Set INFO = N+1 if the matrix is singular to working precision. * IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) $ INFO = N + 1 * WORK( 1 ) = LWKOPT * RETURN * * End of ZHESVX * END