numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zhfrk.f | 18358B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
*> \brief \b ZHFRK performs a Hermitian rank-k operation for matrix in RFP format. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZHFRK + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhfrk.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhfrk.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhfrk.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, * C ) * * .. Scalar Arguments .. * DOUBLE PRECISION ALPHA, BETA * INTEGER K, LDA, N * CHARACTER TRANS, TRANSR, UPLO * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), C( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Level 3 BLAS like routine for C in RFP Format. *> *> ZHFRK performs one of the Hermitian rank--k operations *> *> C := alpha*A*A**H + beta*C, *> *> or *> *> C := alpha*A**H*A + beta*C, *> *> where alpha and beta are real scalars, C is an n--by--n Hermitian *> matrix and A is an n--by--k matrix in the first case and a k--by--n *> matrix in the second case. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANSR *> \verbatim *> TRANSR is CHARACTER*1 *> = 'N': The Normal Form of RFP A is stored; *> = 'C': The Conjugate-transpose Form of RFP A is stored. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the upper or lower *> triangular part of the array C is to be referenced as *> follows: *> *> UPLO = 'U' or 'u' Only the upper triangular part of C *> is to be referenced. *> *> UPLO = 'L' or 'l' Only the lower triangular part of C *> is to be referenced. *> *> Unchanged on exit. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> On entry, TRANS specifies the operation to be performed as *> follows: *> *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C. *> *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C. *> *> Unchanged on exit. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of the matrix C. N must be *> at least zero. *> Unchanged on exit. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> On entry with TRANS = 'N' or 'n', K specifies the number *> of columns of the matrix A, and on entry with *> TRANS = 'C' or 'c', K specifies the number of rows of the *> matrix A. K must be at least zero. *> Unchanged on exit. *> \endverbatim *> *> \param[in] ALPHA *> \verbatim *> ALPHA is DOUBLE PRECISION *> On entry, ALPHA specifies the scalar alpha. *> Unchanged on exit. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,ka) *> where KA *> is K when TRANS = 'N' or 'n', and is N otherwise. Before *> entry with TRANS = 'N' or 'n', the leading N--by--K part of *> the array A must contain the matrix A, otherwise the leading *> K--by--N part of the array A must contain the matrix A. *> Unchanged on exit. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. When TRANS = 'N' or 'n' *> then LDA must be at least max( 1, n ), otherwise LDA must *> be at least max( 1, k ). *> Unchanged on exit. *> \endverbatim *> *> \param[in] BETA *> \verbatim *> BETA is DOUBLE PRECISION *> On entry, BETA specifies the scalar beta. *> Unchanged on exit. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX*16 array, dimension (N*(N+1)/2) *> On entry, the matrix A in RFP Format. RFP Format is *> described by TRANSR, UPLO and N. Note that the imaginary *> parts of the diagonal elements need not be set, they are *> assumed to be zero, and on exit they are set to zero. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hfrk * * ===================================================================== SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, $ BETA, $ C ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER K, LDA, N CHARACTER TRANS, TRANSR, UPLO * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), C( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO COMPLEX*16 CZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS INTEGER INFO, NROWA, J, NK, N1, N2 COMPLEX*16 CALPHA, CBETA * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMM, ZHERK * .. * .. Intrinsic Functions .. INTRINSIC MAX, DCMPLX * .. * .. Executable Statements .. * * * Test the input parameters. * INFO = 0 NORMALTRANSR = LSAME( TRANSR, 'N' ) LOWER = LSAME( UPLO, 'L' ) NOTRANS = LSAME( TRANS, 'N' ) * IF( NOTRANS ) THEN NROWA = N ELSE NROWA = K END IF * IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN INFO = -1 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN INFO = -2 ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHFRK ', -INFO ) RETURN END IF * * Quick return if possible. * * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not * done (it is in ZHERK for example) and left in the general case. * IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. $ ( BETA.EQ.ONE ) ) )RETURN * IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN DO J = 1, ( ( N*( N+1 ) ) / 2 ) C( J ) = CZERO END DO RETURN END IF * CALPHA = DCMPLX( ALPHA, ZERO ) CBETA = DCMPLX( BETA, ZERO ) * * C is N-by-N. * If N is odd, set NISODD = .TRUE., and N1 and N2. * If N is even, NISODD = .FALSE., and NK. * IF( MOD( N, 2 ).EQ.0 ) THEN NISODD = .FALSE. NK = N / 2 ELSE NISODD = .TRUE. IF( LOWER ) THEN N2 = N / 2 N1 = N - N2 ELSE N1 = N / 2 N2 = N - N1 END IF END IF * IF( NISODD ) THEN * * N is odd * IF( NORMALTRANSR ) THEN * * N is odd and TRANSR = 'N' * IF( LOWER ) THEN * * N is odd, TRANSR = 'N', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N ) CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), $ LDA, $ BETA, C( N+1 ), N ) CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, $ 1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' * CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N ) CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), $ LDA, $ BETA, C( N+1 ), N ) CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, $ N1+1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N ) * END IF * ELSE * * N is odd, TRANSR = 'N', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2+1 ), N ) CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), $ LDA, $ BETA, C( N1+1 ), N ) CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ), $ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' * CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2+1 ), N ) CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), $ LDA, $ BETA, C( N1+1 ), N ) CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ), $ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N ) * END IF * END IF * ELSE * * N is odd, and TRANSR = 'C' * IF( LOWER ) THEN * * N is odd, TRANSR = 'C', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' * CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N1 ) CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), $ LDA, $ BETA, C( 2 ), N1 ) CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ), $ LDA, A( N1+1, 1 ), LDA, CBETA, $ C( N1*N1+1 ), N1 ) * ELSE * * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' * CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 1 ), N1 ) CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), $ LDA, $ BETA, C( 2 ), N1 ) CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ), $ LDA, A( 1, N1+1 ), LDA, CBETA, $ C( N1*N1+1 ), N1 ) * END IF * ELSE * * N is odd, TRANSR = 'C', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' * CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2*N2+1 ), N2 ) CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), $ LDA, $ BETA, C( N1*N2+1 ), N2 ) CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, $ 1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 ) * ELSE * * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' * CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( N2*N2+1 ), N2 ) CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), $ LDA, $ BETA, C( N1*N2+1 ), N2 ) CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, $ N1+1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 ) * END IF * END IF * END IF * ELSE * * N is even * IF( NORMALTRANSR ) THEN * * N is even and TRANSR = 'N' * IF( LOWER ) THEN * * N is even, TRANSR = 'N', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 2 ), N+1 ) CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), $ LDA, $ BETA, C( 1 ), N+1 ) CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, $ 1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ), $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' * CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( 2 ), N+1 ) CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), $ LDA, $ BETA, C( 1 ), N+1 ) CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, $ NK+1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ), $ N+1 ) * END IF * ELSE * * N is even, TRANSR = 'N', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+2 ), N+1 ) CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), $ LDA, $ BETA, C( NK+1 ), N+1 ) CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ), $ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ), $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' * CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+2 ), N+1 ) CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), $ LDA, $ BETA, C( NK+1 ), N+1 ) CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ), $ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ), $ N+1 ) * END IF * END IF * ELSE * * N is even, and TRANSR = 'C' * IF( LOWER ) THEN * * N is even, TRANSR = 'C', and UPLO = 'L' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' * CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+1 ), NK ) CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), $ LDA, $ BETA, C( 1 ), NK ) CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ), $ LDA, A( NK+1, 1 ), LDA, CBETA, $ C( ( ( NK+1 )*NK )+1 ), NK ) * ELSE * * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' * CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK+1 ), NK ) CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), $ LDA, $ BETA, C( 1 ), NK ) CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ), $ LDA, A( 1, NK+1 ), LDA, CBETA, $ C( ( ( NK+1 )*NK )+1 ), NK ) * END IF * ELSE * * N is even, TRANSR = 'C', and UPLO = 'U' * IF( NOTRANS ) THEN * * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' * CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), $ LDA, $ BETA, C( NK*NK+1 ), NK ) CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, $ 1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK ) * ELSE * * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' * CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA, $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), $ LDA, $ BETA, C( NK*NK+1 ), NK ) CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, $ NK+1 ), $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK ) * END IF * END IF * END IF * END IF * RETURN * * End of ZHFRK * END