numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zlag2c.f 4258B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
*> \brief \b ZLAG2C converts a complex double precision matrix to a complex single precision matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAG2C + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlag2c.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlag2c.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlag2c.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLAG2C( M, N, A, LDA, SA, LDSA, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDSA, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            SA( LDSA, * )
*       COMPLEX*16         A( LDA, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAG2C converts a COMPLEX*16 matrix, SA, to a COMPLEX matrix, A.
*>
*> RMAX is the overflow for the SINGLE PRECISION arithmetic
*> ZLAG2C checks that all the entries of A are between -RMAX and
*> RMAX. If not the conversion is aborted and a flag is raised.
*>
*> This is an auxiliary routine so there is no argument checking.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of lines of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the M-by-N coefficient matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] SA
*> \verbatim
*>          SA is COMPLEX array, dimension (LDSA,N)
*>          On exit, if INFO=0, the M-by-N coefficient matrix SA; if
*>          INFO>0, the content of SA is unspecified.
*> \endverbatim
*>
*> \param[in] LDSA
*> \verbatim
*>          LDSA is INTEGER
*>          The leading dimension of the array SA.  LDSA >= max(1,M).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          = 1:  an entry of the matrix A is greater than the SINGLE
*>                PRECISION overflow threshold, in this case, the content
*>                of SA in exit is unspecified.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup _lag2_
*
*  =====================================================================
      SUBROUTINE ZLAG2C( M, N, A, LDA, SA, LDSA, INFO )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDSA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            SA( LDSA, * )
      COMPLEX*16         A( LDA, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   RMAX
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DIMAG, CMPLX
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Executable Statements ..
*
      RMAX = SLAMCH( 'O' )
      DO 20 J = 1, N
         DO 10 I = 1, M
            IF( ( DBLE( A( I, J ) ).LT.-RMAX ) .OR.
     $          ( DBLE( A( I, J ) ).GT.RMAX ) .OR.
     $          ( DIMAG( A( I, J ) ).LT.-RMAX ) .OR.
     $          ( DIMAG( A( I, J ) ).GT.RMAX ) ) THEN
               INFO = 1
               GO TO 30
            END IF
            SA( I, J ) = CMPLX( A( I, J ) )
   10    CONTINUE
   20 CONTINUE
      INFO = 0
   30 CONTINUE
      RETURN
*
*     End of ZLAG2C
*
      END