numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zlals0.f | 18992B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
*> \brief \b ZLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by sgelsd. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLALS0 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlals0.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlals0.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlals0.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, * PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, * POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO ) * * .. Scalar Arguments .. * INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, * $ LDGNUM, NL, NR, NRHS, SQRE * DOUBLE PRECISION C, S * .. * .. Array Arguments .. * INTEGER GIVCOL( LDGCOL, * ), PERM( * ) * DOUBLE PRECISION DIFL( * ), DIFR( LDGNUM, * ), * $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), * $ RWORK( * ), Z( * ) * COMPLEX*16 B( LDB, * ), BX( LDBX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLALS0 applies back the multiplying factors of either the left or the *> right singular vector matrix of a diagonal matrix appended by a row *> to the right hand side matrix B in solving the least squares problem *> using the divide-and-conquer SVD approach. *> *> For the left singular vector matrix, three types of orthogonal *> matrices are involved: *> *> (1L) Givens rotations: the number of such rotations is GIVPTR; the *> pairs of columns/rows they were applied to are stored in GIVCOL; *> and the C- and S-values of these rotations are stored in GIVNUM. *> *> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first *> row, and for J=2:N, PERM(J)-th row of B is to be moved to the *> J-th row. *> *> (3L) The left singular vector matrix of the remaining matrix. *> *> For the right singular vector matrix, four types of orthogonal *> matrices are involved: *> *> (1R) The right singular vector matrix of the remaining matrix. *> *> (2R) If SQRE = 1, one extra Givens rotation to generate the right *> null space. *> *> (3R) The inverse transformation of (2L). *> *> (4R) The inverse transformation of (1L). *> \endverbatim * * Arguments: * ========== * *> \param[in] ICOMPQ *> \verbatim *> ICOMPQ is INTEGER *> Specifies whether singular vectors are to be computed in *> factored form: *> = 0: Left singular vector matrix. *> = 1: Right singular vector matrix. *> \endverbatim *> *> \param[in] NL *> \verbatim *> NL is INTEGER *> The row dimension of the upper block. NL >= 1. *> \endverbatim *> *> \param[in] NR *> \verbatim *> NR is INTEGER *> The row dimension of the lower block. NR >= 1. *> \endverbatim *> *> \param[in] SQRE *> \verbatim *> SQRE is INTEGER *> = 0: the lower block is an NR-by-NR square matrix. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *> *> The bidiagonal matrix has row dimension N = NL + NR + 1, *> and column dimension M = N + SQRE. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B and BX. NRHS must be at least 1. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension ( LDB, NRHS ) *> On input, B contains the right hand sides of the least *> squares problem in rows 1 through M. On output, B contains *> the solution X in rows 1 through N. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. LDB must be at least *> max(1,MAX( M, N ) ). *> \endverbatim *> *> \param[out] BX *> \verbatim *> BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) *> \endverbatim *> *> \param[in] LDBX *> \verbatim *> LDBX is INTEGER *> The leading dimension of BX. *> \endverbatim *> *> \param[in] PERM *> \verbatim *> PERM is INTEGER array, dimension ( N ) *> The permutations (from deflation and sorting) applied *> to the two blocks. *> \endverbatim *> *> \param[in] GIVPTR *> \verbatim *> GIVPTR is INTEGER *> The number of Givens rotations which took place in this *> subproblem. *> \endverbatim *> *> \param[in] GIVCOL *> \verbatim *> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) *> Each pair of numbers indicates a pair of rows/columns *> involved in a Givens rotation. *> \endverbatim *> *> \param[in] LDGCOL *> \verbatim *> LDGCOL is INTEGER *> The leading dimension of GIVCOL, must be at least N. *> \endverbatim *> *> \param[in] GIVNUM *> \verbatim *> GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *> Each number indicates the C or S value used in the *> corresponding Givens rotation. *> \endverbatim *> *> \param[in] LDGNUM *> \verbatim *> LDGNUM is INTEGER *> The leading dimension of arrays DIFR, POLES and *> GIVNUM, must be at least K. *> \endverbatim *> *> \param[in] POLES *> \verbatim *> POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) *> On entry, POLES(1:K, 1) contains the new singular *> values obtained from solving the secular equation, and *> POLES(1:K, 2) is an array containing the poles in the secular *> equation. *> \endverbatim *> *> \param[in] DIFL *> \verbatim *> DIFL is DOUBLE PRECISION array, dimension ( K ). *> On entry, DIFL(I) is the distance between I-th updated *> (undeflated) singular value and the I-th (undeflated) old *> singular value. *> \endverbatim *> *> \param[in] DIFR *> \verbatim *> DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). *> On entry, DIFR(I, 1) contains the distances between I-th *> updated (undeflated) singular value and the I+1-th *> (undeflated) old singular value. And DIFR(I, 2) is the *> normalizing factor for the I-th right singular vector. *> \endverbatim *> *> \param[in] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension ( K ) *> Contain the components of the deflation-adjusted updating row *> vector. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> Contains the dimension of the non-deflated matrix, *> This is the order of the related secular equation. 1 <= K <=N. *> \endverbatim *> *> \param[in] C *> \verbatim *> C is DOUBLE PRECISION *> C contains garbage if SQRE =0 and the C-value of a Givens *> rotation related to the right null space if SQRE = 1. *> \endverbatim *> *> \param[in] S *> \verbatim *> S is DOUBLE PRECISION *> S contains garbage if SQRE =0 and the S-value of a Givens *> rotation related to the right null space if SQRE = 1. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension *> ( K*(1+NRHS) + 2*NRHS ) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup lals0 * *> \par Contributors: * ================== *> *> Ming Gu and Ren-Cang Li, Computer Science Division, University of *> California at Berkeley, USA \n *> Osni Marques, LBNL/NERSC, USA \n * * ===================================================================== SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, $ LDBX, $ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, $ POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, $ LDGNUM, NL, NR, NRHS, SQRE DOUBLE PRECISION C, S * .. * .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), PERM( * ) DOUBLE PRECISION DIFL( * ), DIFR( LDGNUM, * ), $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), $ RWORK( * ), Z( * ) COMPLEX*16 B( LDB, * ), BX( LDBX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO, NEGONE PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 ) * .. * .. Local Scalars .. INTEGER I, J, JCOL, JROW, M, N, NLP1 DOUBLE PRECISION DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP * .. * .. External Subroutines .. EXTERNAL DGEMV, XERBLA, ZCOPY, ZDROT, ZDSCAL, $ ZLACPY, $ ZLASCL * .. * .. External Functions .. DOUBLE PRECISION DLAMC3, DNRM2 EXTERNAL DLAMC3, DNRM2 * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, DIMAG, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 N = NL + NR + 1 * IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( NL.LT.1 ) THEN INFO = -2 ELSE IF( NR.LT.1 ) THEN INFO = -3 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -4 ELSE IF( NRHS.LT.1 ) THEN INFO = -5 ELSE IF( LDB.LT.N ) THEN INFO = -7 ELSE IF( LDBX.LT.N ) THEN INFO = -9 ELSE IF( GIVPTR.LT.0 ) THEN INFO = -11 ELSE IF( LDGCOL.LT.N ) THEN INFO = -13 ELSE IF( LDGNUM.LT.N ) THEN INFO = -15 ELSE IF( K.LT.1 ) THEN INFO = -20 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLALS0', -INFO ) RETURN END IF * M = N + SQRE NLP1 = NL + 1 * IF( ICOMPQ.EQ.0 ) THEN * * Apply back orthogonal transformations from the left. * * Step (1L): apply back the Givens rotations performed. * DO 10 I = 1, GIVPTR CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, $ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), $ GIVNUM( I, 1 ) ) 10 CONTINUE * * Step (2L): permute rows of B. * CALL ZCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX ) DO 20 I = 2, N CALL ZCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), $ LDBX ) 20 CONTINUE * * Step (3L): apply the inverse of the left singular vector * matrix to BX. * IF( K.EQ.1 ) THEN CALL ZCOPY( NRHS, BX, LDBX, B, LDB ) IF( Z( 1 ).LT.ZERO ) THEN CALL ZDSCAL( NRHS, NEGONE, B, LDB ) END IF ELSE DO 100 J = 1, K DIFLJ = DIFL( J ) DJ = POLES( J, 1 ) DSIGJ = -POLES( J, 2 ) IF( J.LT.K ) THEN DIFRJ = -DIFR( J, 1 ) DSIGJP = -POLES( J+1, 2 ) END IF IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) ) $ THEN RWORK( J ) = ZERO ELSE RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ / $ ( POLES( J, 2 )+DJ ) END IF DO 30 I = 1, J - 1 IF( ( Z( I ).EQ.ZERO ) .OR. $ ( POLES( I, 2 ).EQ.ZERO ) ) THEN RWORK( I ) = ZERO ELSE * * Use calls to the subroutine DLAMC3 to enforce the * parentheses (x+y)+z. The goal is to prevent * optimizing compilers from doing x+(y+z). * RWORK( I ) = POLES( I, 2 )*Z( I ) / $ ( DLAMC3( POLES( I, 2 ), DSIGJ )- $ DIFLJ ) / ( POLES( I, 2 )+DJ ) END IF 30 CONTINUE DO 40 I = J + 1, K IF( ( Z( I ).EQ.ZERO ) .OR. $ ( POLES( I, 2 ).EQ.ZERO ) ) THEN RWORK( I ) = ZERO ELSE RWORK( I ) = POLES( I, 2 )*Z( I ) / $ ( DLAMC3( POLES( I, 2 ), DSIGJP )+ $ DIFRJ ) / ( POLES( I, 2 )+DJ ) END IF 40 CONTINUE RWORK( 1 ) = NEGONE TEMP = DNRM2( K, RWORK, 1 ) * * Since B and BX are complex, the following call to DGEMV * is performed in two steps (real and imaginary parts). * * CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, * $ B( J, 1 ), LDB ) * I = K + NRHS*2 DO 60 JCOL = 1, NRHS DO 50 JROW = 1, K I = I + 1 RWORK( I ) = DBLE( BX( JROW, JCOL ) ) 50 CONTINUE 60 CONTINUE CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K, $ RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 ) I = K + NRHS*2 DO 80 JCOL = 1, NRHS DO 70 JROW = 1, K I = I + 1 RWORK( I ) = DIMAG( BX( JROW, JCOL ) ) 70 CONTINUE 80 CONTINUE CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K, $ RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 ) DO 90 JCOL = 1, NRHS B( J, JCOL ) = DCMPLX( RWORK( JCOL+K ), $ RWORK( JCOL+K+NRHS ) ) 90 CONTINUE CALL ZLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ), $ LDB, INFO ) 100 CONTINUE END IF * * Move the deflated rows of BX to B also. * IF( K.LT.MAX( M, N ) ) $ CALL ZLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX, $ B( K+1, 1 ), LDB ) ELSE * * Apply back the right orthogonal transformations. * * Step (1R): apply back the new right singular vector matrix * to B. * IF( K.EQ.1 ) THEN CALL ZCOPY( NRHS, B, LDB, BX, LDBX ) ELSE DO 180 J = 1, K DSIGJ = POLES( J, 2 ) IF( Z( J ).EQ.ZERO ) THEN RWORK( J ) = ZERO ELSE RWORK( J ) = -Z( J ) / DIFL( J ) / $ ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 ) END IF DO 110 I = 1, J - 1 IF( Z( J ).EQ.ZERO ) THEN RWORK( I ) = ZERO ELSE * * Use calls to the subroutine DLAMC3 to enforce the * parentheses (x+y)+z. The goal is to prevent * optimizing compilers from doing x+(y+z). * RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, $ -POLES( I+1, $ 2 ) )-DIFR( I, 1 ) ) / $ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 ) END IF 110 CONTINUE DO 120 I = J + 1, K IF( Z( J ).EQ.ZERO ) THEN RWORK( I ) = ZERO ELSE RWORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, $ -POLES( I, $ 2 ) )-DIFL( I ) ) / $ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 ) END IF 120 CONTINUE * * Since B and BX are complex, the following call to DGEMV * is performed in two steps (real and imaginary parts). * * CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, * $ BX( J, 1 ), LDBX ) * I = K + NRHS*2 DO 140 JCOL = 1, NRHS DO 130 JROW = 1, K I = I + 1 RWORK( I ) = DBLE( B( JROW, JCOL ) ) 130 CONTINUE 140 CONTINUE CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K, $ RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 ) I = K + NRHS*2 DO 160 JCOL = 1, NRHS DO 150 JROW = 1, K I = I + 1 RWORK( I ) = DIMAG( B( JROW, JCOL ) ) 150 CONTINUE 160 CONTINUE CALL DGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K, $ RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 ) DO 170 JCOL = 1, NRHS BX( J, JCOL ) = DCMPLX( RWORK( JCOL+K ), $ RWORK( JCOL+K+NRHS ) ) 170 CONTINUE 180 CONTINUE END IF * * Step (2R): if SQRE = 1, apply back the rotation that is * related to the right null space of the subproblem. * IF( SQRE.EQ.1 ) THEN CALL ZCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX ) CALL ZDROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, $ S ) END IF IF( K.LT.MAX( M, N ) ) $ CALL ZLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, $ 1 ), $ LDBX ) * * Step (3R): permute rows of B. * CALL ZCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB ) IF( SQRE.EQ.1 ) THEN CALL ZCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB ) END IF DO 190 I = 2, N CALL ZCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), $ LDB ) 190 CONTINUE * * Step (4R): apply back the Givens rotations performed. * DO 200 I = GIVPTR, 1, -1 CALL ZDROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, $ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), $ -GIVNUM( I, 1 ) ) 200 CONTINUE END IF * RETURN * * End of ZLALS0 * END