numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zlaqr3.f | 18123B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
*> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLAQR3 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, * IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, * NV, WV, LDWV, WORK, LWORK ) * * .. Scalar Arguments .. * INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, * $ LDZ, LWORK, N, ND, NH, NS, NV, NW * LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. * COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), * $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> Aggressive early deflation: *> *> ZLAQR3 accepts as input an upper Hessenberg matrix *> H and performs an unitary similarity transformation *> designed to detect and deflate fully converged eigenvalues from *> a trailing principal submatrix. On output H has been over- *> written by a new Hessenberg matrix that is a perturbation of *> an unitary similarity transformation of H. It is to be *> hoped that the final version of H has many zero subdiagonal *> entries. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTT *> \verbatim *> WANTT is LOGICAL *> If .TRUE., then the Hessenberg matrix H is fully updated *> so that the triangular Schur factor may be *> computed (in cooperation with the calling subroutine). *> If .FALSE., then only enough of H is updated to preserve *> the eigenvalues. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is LOGICAL *> If .TRUE., then the unitary matrix Z is updated so *> so that the unitary Schur factor may be computed *> (in cooperation with the calling subroutine). *> If .FALSE., then Z is not referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix H and (if WANTZ is .TRUE.) the *> order of the unitary matrix Z. *> \endverbatim *> *> \param[in] KTOP *> \verbatim *> KTOP is INTEGER *> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. *> KBOT and KTOP together determine an isolated block *> along the diagonal of the Hessenberg matrix. *> \endverbatim *> *> \param[in] KBOT *> \verbatim *> KBOT is INTEGER *> It is assumed without a check that either *> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together *> determine an isolated block along the diagonal of the *> Hessenberg matrix. *> \endverbatim *> *> \param[in] NW *> \verbatim *> NW is INTEGER *> Deflation window size. 1 <= NW <= (KBOT-KTOP+1). *> \endverbatim *> *> \param[in,out] H *> \verbatim *> H is COMPLEX*16 array, dimension (LDH,N) *> On input the initial N-by-N section of H stores the *> Hessenberg matrix undergoing aggressive early deflation. *> On output H has been transformed by a unitary *> similarity transformation, perturbed, and the returned *> to Hessenberg form that (it is to be hoped) has some *> zero subdiagonal entries. *> \endverbatim *> *> \param[in] LDH *> \verbatim *> LDH is INTEGER *> Leading dimension of H just as declared in the calling *> subroutine. N <= LDH *> \endverbatim *> *> \param[in] ILOZ *> \verbatim *> ILOZ is INTEGER *> \endverbatim *> *> \param[in] IHIZ *> \verbatim *> IHIZ is INTEGER *> Specify the rows of Z to which transformations must be *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ,N) *> IF WANTZ is .TRUE., then on output, the unitary *> similarity transformation mentioned above has been *> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. *> If WANTZ is .FALSE., then Z is unreferenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of Z just as declared in the *> calling subroutine. 1 <= LDZ. *> \endverbatim *> *> \param[out] NS *> \verbatim *> NS is INTEGER *> The number of unconverged (ie approximate) eigenvalues *> returned in SR and SI that may be used as shifts by the *> calling subroutine. *> \endverbatim *> *> \param[out] ND *> \verbatim *> ND is INTEGER *> The number of converged eigenvalues uncovered by this *> subroutine. *> \endverbatim *> *> \param[out] SH *> \verbatim *> SH is COMPLEX*16 array, dimension (KBOT) *> On output, approximate eigenvalues that may *> be used for shifts are stored in SH(KBOT-ND-NS+1) *> through SR(KBOT-ND). Converged eigenvalues are *> stored in SH(KBOT-ND+1) through SH(KBOT). *> \endverbatim *> *> \param[out] V *> \verbatim *> V is COMPLEX*16 array, dimension (LDV,NW) *> An NW-by-NW work array. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of V just as declared in the *> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[in] NH *> \verbatim *> NH is INTEGER *> The number of columns of T. NH >= NW. *> \endverbatim *> *> \param[out] T *> \verbatim *> T is COMPLEX*16 array, dimension (LDT,NW) *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of T just as declared in the *> calling subroutine. NW <= LDT *> \endverbatim *> *> \param[in] NV *> \verbatim *> NV is INTEGER *> The number of rows of work array WV available for *> workspace. NV >= NW. *> \endverbatim *> *> \param[out] WV *> \verbatim *> WV is COMPLEX*16 array, dimension (LDWV,NW) *> \endverbatim *> *> \param[in] LDWV *> \verbatim *> LDWV is INTEGER *> The leading dimension of W just as declared in the *> calling subroutine. NW <= LDV *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LWORK) *> On exit, WORK(1) is set to an estimate of the optimal value *> of LWORK for the given values of N, NW, KTOP and KBOT. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the work array WORK. LWORK = 2*NW *> suffices, but greater efficiency may result from larger *> values of LWORK. *> *> If LWORK = -1, then a workspace query is assumed; ZLAQR3 *> only estimates the optimal workspace size for the given *> values of N, NW, KTOP and KBOT. The estimate is returned *> in WORK(1). No error message related to LWORK is issued *> by XERBLA. Neither H nor Z are accessed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup laqr3 * *> \par Contributors: * ================== *> *> Karen Braman and Ralph Byers, Department of Mathematics, *> University of Kansas, USA *> * ===================================================================== SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, $ ILOZ, $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, $ NV, WV, LDWV, WORK, LWORK ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, $ LDZ, LWORK, N, ND, NH, NS, NV, NW LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) * .. * * ================================================================ * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ), $ ONE = ( 1.0d0, 0.0d0 ) ) DOUBLE PRECISION RZERO, RONE PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 ) * .. * .. Local Scalars .. COMPLEX*16 CDUM, S, TAU DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN, $ KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3, $ LWKOPT, NMIN * .. * .. External Functions .. DOUBLE PRECISION DLAMCH INTEGER ILAENV EXTERNAL DLAMCH, ILAENV * .. * .. External Subroutines .. EXTERNAL ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR, $ ZLAQR4, $ ZLARF1F, ZLARFG, ZLASET, ZTREXC, ZUNMHR * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) * .. * .. Executable Statements .. * * ==== Estimate optimal workspace. ==== * JW = MIN( NW, KBOT-KTOP+1 ) IF( JW.LE.2 ) THEN LWKOPT = 1 ELSE * * ==== Workspace query call to ZGEHRD ==== * CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO ) LWK1 = INT( WORK( 1 ) ) * * ==== Workspace query call to ZUNMHR ==== * CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, $ LDV, $ WORK, -1, INFO ) LWK2 = INT( WORK( 1 ) ) * * ==== Workspace query call to ZLAQR4 ==== * CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, $ V, $ LDV, WORK, -1, INFQR ) LWK3 = INT( WORK( 1 ) ) * * ==== Optimal workspace ==== * LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 ) END IF * * ==== Quick return in case of workspace query. ==== * IF( LWORK.EQ.-1 ) THEN WORK( 1 ) = DCMPLX( LWKOPT, 0 ) RETURN END IF * * ==== Nothing to do ... * ... for an empty active block ... ==== NS = 0 ND = 0 WORK( 1 ) = ONE IF( KTOP.GT.KBOT ) $ RETURN * ... nor for an empty deflation window. ==== IF( NW.LT.1 ) $ RETURN * * ==== Machine constants ==== * SAFMIN = DLAMCH( 'SAFE MINIMUM' ) SAFMAX = RONE / SAFMIN ULP = DLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( DBLE( N ) / ULP ) * * ==== Setup deflation window ==== * JW = MIN( NW, KBOT-KTOP+1 ) KWTOP = KBOT - JW + 1 IF( KWTOP.EQ.KTOP ) THEN S = ZERO ELSE S = H( KWTOP, KWTOP-1 ) END IF * IF( KBOT.EQ.KWTOP ) THEN * * ==== 1-by-1 deflation window: not much to do ==== * SH( KWTOP ) = H( KWTOP, KWTOP ) NS = 1 ND = 0 IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP, $ KWTOP ) ) ) ) THEN NS = 0 ND = 1 IF( KWTOP.GT.KTOP ) $ H( KWTOP, KWTOP-1 ) = ZERO END IF WORK( 1 ) = ONE RETURN END IF * * ==== Convert to spike-triangular form. (In case of a * . rare QR failure, this routine continues to do * . aggressive early deflation using that part of * . the deflation window that converged using INFQR * . here and there to keep track.) ==== * CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT ) CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), $ LDT+1 ) * CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV ) NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK ) IF( JW.GT.NMIN ) THEN CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), $ 1, $ JW, V, LDV, WORK, LWORK, INFQR ) ELSE CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), $ 1, $ JW, V, LDV, INFQR ) END IF * * ==== Deflation detection loop ==== * NS = JW ILST = INFQR + 1 DO 10 KNT = INFQR + 1, JW * * ==== Small spike tip deflation test ==== * FOO = CABS1( T( NS, NS ) ) IF( FOO.EQ.RZERO ) $ FOO = CABS1( S ) IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) $ THEN * * ==== One more converged eigenvalue ==== * NS = NS - 1 ELSE * * ==== One undeflatable eigenvalue. Move it up out of the * . way. (ZTREXC can not fail in this case.) ==== * IFST = NS CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO ) ILST = ILST + 1 END IF 10 CONTINUE * * ==== Return to Hessenberg form ==== * IF( NS.EQ.0 ) $ S = ZERO * IF( NS.LT.JW ) THEN * * ==== sorting the diagonal of T improves accuracy for * . graded matrices. ==== * DO 30 I = INFQR + 1, NS IFST = I DO 20 J = I + 1, NS IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) ) $ IFST = J 20 CONTINUE ILST = I IF( IFST.NE.ILST ) $ CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, $ INFO ) 30 CONTINUE END IF * * ==== Restore shift/eigenvalue array from T ==== * DO 40 I = INFQR + 1, JW SH( KWTOP+I-1 ) = T( I, I ) 40 CONTINUE * * IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN IF( NS.GT.1 .AND. S.NE.ZERO ) THEN * * ==== Reflect spike back into lower triangle ==== * CALL ZCOPY( NS, V, LDV, WORK, 1 ) DO 50 I = 1, NS WORK( I ) = DCONJG( WORK( I ) ) 50 CONTINUE CALL ZLARFG( NS, WORK( 1 ), WORK( 2 ), 1, TAU ) * CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), $ LDT ) * CALL ZLARF1F( 'L', NS, JW, WORK, 1, CONJG( TAU ), T, LDT, $ WORK( JW+1 ) ) CALL ZLARF1F( 'R', NS, NS, WORK, 1, TAU, T, LDT, $ WORK( JW+1 ) ) CALL ZLARF1F( 'R', JW, NS, WORK, 1, TAU, V, LDV, $ WORK( JW+1 ) ) * CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), $ LWORK-JW, INFO ) END IF * * ==== Copy updated reduced window into place ==== * IF( KWTOP.GT.1 ) $ H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) ) CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH ) CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ), $ LDH+1 ) * * ==== Accumulate orthogonal matrix in order update * . H and Z, if requested. ==== * IF( NS.GT.1 .AND. S.NE.ZERO ) $ CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, $ LDV, $ WORK( JW+1 ), LWORK-JW, INFO ) * * ==== Update vertical slab in H ==== * IF( WANTT ) THEN LTOP = 1 ELSE LTOP = KTOP END IF DO 60 KROW = LTOP, KWTOP - 1, NV KLN = MIN( NV, KWTOP-KROW ) CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ), $ LDH, V, LDV, ZERO, WV, LDWV ) CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), $ LDH ) 60 CONTINUE * * ==== Update horizontal slab in H ==== * IF( WANTT ) THEN DO 70 KCOL = KBOT + 1, N, NH KLN = MIN( NH, N-KCOL+1 ) CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV, $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT ) CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ), $ LDH ) 70 CONTINUE END IF * * ==== Update vertical slab in Z ==== * IF( WANTZ ) THEN DO 80 KROW = ILOZ, IHIZ, NV KLN = MIN( NV, IHIZ-KROW+1 ) CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, $ KWTOP ), $ LDZ, V, LDV, ZERO, WV, LDWV ) CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ), $ LDZ ) 80 CONTINUE END IF END IF * * ==== Return the number of deflations ... ==== * ND = JW - NS * * ==== ... and the number of shifts. (Subtracting * . INFQR from the spike length takes care * . of the case of a rare QR failure while * . calculating eigenvalues of the deflation * . window.) ==== * NS = NS - INFQR * * ==== Return optimal workspace. ==== * WORK( 1 ) = DCMPLX( LWKOPT, 0 ) * * ==== End of ZLAQR3 ==== * END