numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zlaqz0.f | 22956B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
*> \brief \b ZLAQZ0 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLAQZ0 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqz0.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqz0.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqz0.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, * $ LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC, * $ INFO ) * IMPLICIT NONE * * Arguments * CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ * INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, * $ REC * INTEGER, INTENT( OUT ) :: INFO * COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * $ * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * ) * DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T), *> where H is an upper Hessenberg matrix and T is upper triangular, *> using the double-shift QZ method. *> Matrix pairs of this type are produced by the reduction to *> generalized upper Hessenberg form of a real matrix pair (A,B): *> *> A = Q1*H*Z1**H, B = Q1*T*Z1**H, *> *> as computed by ZGGHRD. *> *> If JOB='S', then the Hessenberg-triangular pair (H,T) is *> also reduced to generalized Schur form, *> *> H = Q*S*Z**H, T = Q*P*Z**H, *> *> where Q and Z are unitary matrices, P and S are an upper triangular *> matrices. *> *> Optionally, the unitary matrix Q from the generalized Schur *> factorization may be postmultiplied into an input matrix Q1, and the *> unitary matrix Z may be postmultiplied into an input matrix Z1. *> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced *> the matrix pair (A,B) to generalized upper Hessenberg form, then the *> output matrices Q1*Q and Z1*Z are the unitary factors from the *> generalized Schur factorization of (A,B): *> *> A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. *> *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is *> complex and beta real. *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the *> generalized nonsymmetric eigenvalue problem (GNEP) *> A*x = lambda*B*x *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the *> alternate form of the GNEP *> mu*A*y = B*y. *> Eigenvalues can be read directly from the generalized Schur *> form: *> alpha = S(i,i), beta = P(i,i). *> *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix *> Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), *> pp. 241--256. *> *> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ *> Algorithm with Aggressive Early Deflation", SIAM J. Numer. *> Anal., 29(2006), pp. 199--227. *> *> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift, *> multipole rational QZ method with aggressive early deflation" *> \endverbatim * * Arguments: * ========== * *> \param[in] WANTS *> \verbatim *> WANTS is CHARACTER*1 *> = 'E': Compute eigenvalues only; *> = 'S': Compute eigenvalues and the Schur form. *> \endverbatim *> *> \param[in] WANTQ *> \verbatim *> WANTQ is CHARACTER*1 *> = 'N': Left Schur vectors (Q) are not computed; *> = 'I': Q is initialized to the unit matrix and the matrix Q *> of left Schur vectors of (A,B) is returned; *> = 'V': Q must contain an unitary matrix Q1 on entry and *> the product Q1*Q is returned. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is CHARACTER*1 *> = 'N': Right Schur vectors (Z) are not computed; *> = 'I': Z is initialized to the unit matrix and the matrix Z *> of right Schur vectors of (A,B) is returned; *> = 'V': Z must contain an unitary matrix Z1 on entry and *> the product Z1*Z is returned. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A, B, Q, and Z. N >= 0. *> \endverbatim *> *> \param[in] ILO *> \verbatim *> ILO is INTEGER *> \endverbatim *> *> \param[in] IHI *> \verbatim *> IHI is INTEGER *> ILO and IHI mark the rows and columns of A which are in *> Hessenberg form. It is assumed that A is already upper *> triangular in rows and columns 1:ILO-1 and IHI+1:N. *> If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, N) *> On entry, the N-by-N upper Hessenberg matrix A. *> On exit, if JOB = 'S', A contains the upper triangular *> matrix S from the generalized Schur factorization. *> If JOB = 'E', the diagonal blocks of A match those of S, but *> the rest of A is unspecified. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max( 1, N ). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, the N-by-N upper triangular matrix B. *> On exit, if JOB = 'S', B contains the upper triangular *> matrix P from the generalized Schur factorization; *> If JOB = 'E', the diagonal blocks of B match those of P, but *> the rest of B is unspecified. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max( 1, N ). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX*16 array, dimension (N) *> Each scalar alpha defining an eigenvalue *> of GNEP. *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX*16 array, dimension (N) *> The scalars beta that define the eigenvalues of GNEP. *> Together, the quantities alpha = ALPHA(j) and *> beta = BETA(j) represent the j-th eigenvalue of the matrix *> pair (A,B), in one of the forms lambda = alpha/beta or *> mu = beta/alpha. Since either lambda or mu may overflow, *> they should not, in general, be computed. *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ, N) *> On entry, if COMPQ = 'V', the unitary matrix Q1 used in *> the reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPQ = 'I', the unitary matrix of left Schur *> vectors of (A,B), and if COMPQ = 'V', the unitary matrix *> of left Schur vectors of (A,B). *> Not referenced if COMPQ = 'N'. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= 1. *> If COMPQ='V' or 'I', then LDQ >= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ, N) *> On entry, if COMPZ = 'V', the unitary matrix Z1 used in *> the reduction of (A,B) to generalized Hessenberg form. *> On exit, if COMPZ = 'I', the unitary matrix of *> right Schur vectors of (H,T), and if COMPZ = 'V', the *> unitary matrix of right Schur vectors of (A,B). *> Not referenced if COMPZ = 'N'. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1. *> If COMPZ='V' or 'I', then LDZ >= N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= max(1,N). *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[in] REC *> \verbatim *> REC is INTEGER *> REC indicates the current recursion level. Should be set *> to 0 on first call. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> = 1,...,N: the QZ iteration did not converge. (A,B) is not *> in Schur form, but ALPHA(i) and *> BETA(i), i=INFO+1,...,N should be correct. *> \endverbatim * * Authors: * ======== * *> \author Thijs Steel, KU Leuven * *> \date May 2020 * *> \ingroup laqz0 *> * ===================================================================== RECURSIVE SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, $ A, $ LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, $ LDZ, WORK, LWORK, RWORK, REC, $ INFO ) IMPLICIT NONE * Arguments CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK, $ REC INTEGER, INTENT( OUT ) :: INFO COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, $ * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * ) DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * ) * Parameters COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0, $ 0.0D+0 ) ) DOUBLE PRECISION :: ZERO, ONE, HALF PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 ) * Local scalars DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR, $ BNORM, BTOL COMPLEX*16 :: ESHIFT, S1, TEMP INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS, $ NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED, $ NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM, $ ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO, $ NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST LOGICAL :: ILSCHUR, ILQ, ILZ CHARACTER :: JBCMPZ*3 * External Functions EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET, $ ZLARTG, ZROT DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS LOGICAL, EXTERNAL :: LSAME INTEGER, EXTERNAL :: ILAENV * * Decode wantS,wantQ,wantZ * IF( LSAME( WANTS, 'E' ) ) THEN ILSCHUR = .FALSE. IWANTS = 1 ELSE IF( LSAME( WANTS, 'S' ) ) THEN ILSCHUR = .TRUE. IWANTS = 2 ELSE IWANTS = 0 END IF IF( LSAME( WANTQ, 'N' ) ) THEN ILQ = .FALSE. IWANTQ = 1 ELSE IF( LSAME( WANTQ, 'V' ) ) THEN ILQ = .TRUE. IWANTQ = 2 ELSE IF( LSAME( WANTQ, 'I' ) ) THEN ILQ = .TRUE. IWANTQ = 3 ELSE IWANTQ = 0 END IF IF( LSAME( WANTZ, 'N' ) ) THEN ILZ = .FALSE. IWANTZ = 1 ELSE IF( LSAME( WANTZ, 'V' ) ) THEN ILZ = .TRUE. IWANTZ = 2 ELSE IF( LSAME( WANTZ, 'I' ) ) THEN ILZ = .TRUE. IWANTZ = 3 ELSE IWANTZ = 0 END IF * * Check Argument Values * INFO = 0 IF( IWANTS.EQ.0 ) THEN INFO = -1 ELSE IF( IWANTQ.EQ.0 ) THEN INFO = -2 ELSE IF( IWANTZ.EQ.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( ILO.LT.1 ) THEN INFO = -5 ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN INFO = -6 ELSE IF( LDA.LT.N ) THEN INFO = -8 ELSE IF( LDB.LT.N ) THEN INFO = -10 ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN INFO = -15 ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN INFO = -17 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAQZ0', -INFO ) RETURN END IF * * Quick return if possible * IF( N.LE.0 ) THEN WORK( 1 ) = DBLE( 1 ) RETURN END IF * * Get the parameters * JBCMPZ( 1:1 ) = WANTS JBCMPZ( 2:2 ) = WANTQ JBCMPZ( 3:3 ) = WANTZ NMIN = ILAENV( 12, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NWR = ILAENV( 13, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NWR = MAX( 2, NWR ) NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR ) NIBBLE = ILAENV( 14, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NSR = ILAENV( 15, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO ) NSR = MAX( 2, NSR-MOD( NSR, 2 ) ) RCOST = ILAENV( 17, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK ) ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) ) ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4 NBR = NSR+ITEMP1 IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, $ LDB, $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, $ INFO ) RETURN END IF * * Find out required workspace * * Workspace query to ZLAQZ2 NW = MAX( NWR, NMIN ) CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, $ LDB, $ Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA, $ BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC, $ AED_INFO ) ITEMP1 = INT( WORK( 1 ) ) * Workspace query to ZLAQZ3 CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA, $ BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR, $ WORK, NBR, WORK, -1, SWEEP_INFO ) ITEMP2 = INT( WORK( 1 ) ) LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 ) IF ( LWORK .EQ.-1 ) THEN WORK( 1 ) = DBLE( LWORKREQ ) RETURN ELSE IF ( LWORK .LT. LWORKREQ ) THEN INFO = -19 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAQZ0', INFO ) RETURN END IF * * Initialize Q and Z * IF( IWANTQ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Q, $ LDQ ) IF( IWANTZ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Z, $ LDZ ) * Get machine constants SAFMIN = DLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE/SAFMIN ULP = DLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( DBLE( N )/ULP ) BNORM = ZLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK ) BTOL = MAX( SAFMIN, ULP*BNORM ) ISTART = ILO ISTOP = IHI MAXIT = 30*( IHI-ILO+1 ) LD = 0 DO IITER = 1, MAXIT IF( IITER .GE. MAXIT ) THEN INFO = ISTOP+1 GOTO 80 END IF IF ( ISTART+1 .GE. ISTOP ) THEN ISTOP = ISTART EXIT END IF * Check deflations at the end IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM, $ ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1, $ ISTOP-1 ) ) ) ) ) THEN A( ISTOP, ISTOP-1 ) = CZERO ISTOP = ISTOP-1 LD = 0 ESHIFT = CZERO END IF * Check deflations at the start IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM, $ ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1, $ ISTART+1 ) ) ) ) ) THEN A( ISTART+1, ISTART ) = CZERO ISTART = ISTART+1 LD = 0 ESHIFT = CZERO END IF IF ( ISTART+1 .GE. ISTOP ) THEN EXIT END IF * Check interior deflations ISTART2 = ISTART DO K = ISTOP, ISTART+1, -1 IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K, $ K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN A( K, K-1 ) = CZERO ISTART2 = K EXIT END IF END DO * Get range to apply rotations to IF ( ILSCHUR ) THEN ISTARTM = 1 ISTOPM = N ELSE ISTARTM = ISTART2 ISTOPM = ISTOP END IF * Check infinite eigenvalues, this is done without blocking so might * slow down the method when many infinite eigenvalues are present K = ISTOP DO WHILE ( K.GE.ISTART2 ) IF( ABS( B( K, K ) ) .LT. BTOL ) THEN * A diagonal element of B is negligible, move it * to the top and deflate it DO K2 = K, ISTART2+1, -1 CALL ZLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, $ S1, $ TEMP ) B( K2-1, K2 ) = TEMP B( K2-1, K2-1 ) = CZERO CALL ZROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1, $ B( ISTARTM, K2-1 ), 1, C1, S1 ) CALL ZROT( MIN( K2+1, ISTOP )-ISTARTM+1, $ A( ISTARTM, $ K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 ) IF ( ILZ ) THEN CALL ZROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, $ C1, $ S1 ) END IF IF( K2.LT.ISTOP ) THEN CALL ZLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1, $ S1, TEMP ) A( K2, K2-1 ) = TEMP A( K2+1, K2-1 ) = CZERO CALL ZROT( ISTOPM-K2+1, A( K2, K2 ), LDA, $ A( K2+1, $ K2 ), LDA, C1, S1 ) CALL ZROT( ISTOPM-K2+1, B( K2, K2 ), LDB, $ B( K2+1, $ K2 ), LDB, C1, S1 ) IF( ILQ ) THEN CALL ZROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1, $ C1, DCONJG( S1 ) ) END IF END IF END DO IF( ISTART2.LT.ISTOP )THEN CALL ZLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1, $ ISTART2 ), C1, S1, TEMP ) A( ISTART2, ISTART2 ) = TEMP A( ISTART2+1, ISTART2 ) = CZERO CALL ZROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2, $ ISTART2+1 ), LDA, A( ISTART2+1, $ ISTART2+1 ), LDA, C1, S1 ) CALL ZROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2, $ ISTART2+1 ), LDB, B( ISTART2+1, $ ISTART2+1 ), LDB, C1, S1 ) IF( ILQ ) THEN CALL ZROT( N, Q( 1, ISTART2 ), 1, Q( 1, $ ISTART2+1 ), 1, C1, DCONJG( S1 ) ) END IF END IF ISTART2 = ISTART2+1 END IF K = K-1 END DO * istart2 now points to the top of the bottom right * unreduced Hessenberg block IF ( ISTART2 .GE. ISTOP ) THEN ISTOP = ISTART2-1 LD = 0 ESHIFT = CZERO CYCLE END IF NW = NWR NSHIFTS = NSR NBLOCK = NBR IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN * Setting nw to the size of the subblock will make AED deflate * all the eigenvalues. This is slightly more efficient than just * using qz_small because the off diagonal part gets updated via BLAS. IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN NW = ISTOP-ISTART+1 ISTART2 = ISTART ELSE NW = ISTOP-ISTART2+1 END IF END IF * * Time for AED * CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, $ LDA, $ B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, $ ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW, $ WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC, $ AED_INFO ) IF ( N_DEFLATED > 0 ) THEN ISTOP = ISTOP-N_DEFLATED LD = 0 ESHIFT = CZERO END IF IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR. $ ISTOP-ISTART2+1 .LT. NMIN ) THEN * AED has uncovered many eigenvalues. Skip a QZ sweep and run * AED again. CYCLE END IF LD = LD+1 NS = MIN( NSHIFTS, ISTOP-ISTART2 ) NS = MIN( NS, N_UNDEFLATED ) SHIFTPOS = ISTOP-N_UNDEFLATED+1 IF ( MOD( LD, 6 ) .EQ. 0 ) THEN * * Exceptional shift. Chosen for no particularly good reason. * IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP, $ ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 ) ELSE ESHIFT = ESHIFT+CONE/( SAFMIN*DBLE( MAXIT ) ) END IF ALPHA( SHIFTPOS ) = CONE BETA( SHIFTPOS ) = ESHIFT NS = 1 END IF * * Time for a QZ sweep * CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, $ NBLOCK, $ ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B, $ LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK** $ 2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ), $ LWORK-2*NBLOCK**2, SWEEP_INFO ) END DO * * Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues * If all the eigenvalues have been found, ZHGEQZ will not do any iterations * and only normalize the blocks. In case of a rare convergence failure, * the single shift might perform better. * 80 CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB, $ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, $ NORM_INFO ) INFO = NORM_INFO END SUBROUTINE