numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zlaqz0.f 22956B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
*> \brief \b ZLAQZ0
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAQZ0 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqz0.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqz0.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqz0.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*      SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
*     $    LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC,
*     $    INFO )
*      IMPLICIT NONE
*
*      Arguments
*      CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
*      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
*     $    REC
*      INTEGER, INTENT( OUT ) :: INFO
*      COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
*     $    * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
*      DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
*> where H is an upper Hessenberg matrix and T is upper triangular,
*> using the double-shift QZ method.
*> Matrix pairs of this type are produced by the reduction to
*> generalized upper Hessenberg form of a real matrix pair (A,B):
*>
*>    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,
*>
*> as computed by ZGGHRD.
*>
*> If JOB='S', then the Hessenberg-triangular pair (H,T) is
*> also reduced to generalized Schur form,
*>
*>    H = Q*S*Z**H,  T = Q*P*Z**H,
*>
*> where Q and Z are unitary matrices, P and S are an upper triangular
*> matrices.
*>
*> Optionally, the unitary matrix Q from the generalized Schur
*> factorization may be postmultiplied into an input matrix Q1, and the
*> unitary matrix Z may be postmultiplied into an input matrix Z1.
*> If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
*> the matrix pair (A,B) to generalized upper Hessenberg form, then the
*> output matrices Q1*Q and Z1*Z are the unitary factors from the
*> generalized Schur factorization of (A,B):
*>
*>    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H.
*>
*> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
*> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
*> complex and beta real.
*> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
*> generalized nonsymmetric eigenvalue problem (GNEP)
*>    A*x = lambda*B*x
*> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
*> alternate form of the GNEP
*>    mu*A*y = B*y.
*> Eigenvalues can be read directly from the generalized Schur
*> form:
*>   alpha = S(i,i), beta = P(i,i).
*>
*> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
*>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
*>      pp. 241--256.
*>
*> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
*>      Algorithm with Aggressive Early Deflation", SIAM J. Numer.
*>      Anal., 29(2006), pp. 199--227.
*>
*> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
*>      multipole rational QZ method with aggressive early deflation"
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] WANTS
*> \verbatim
*>          WANTS is CHARACTER*1
*>          = 'E': Compute eigenvalues only;
*>          = 'S': Compute eigenvalues and the Schur form.
*> \endverbatim
*>
*> \param[in] WANTQ
*> \verbatim
*>          WANTQ is CHARACTER*1
*>          = 'N': Left Schur vectors (Q) are not computed;
*>          = 'I': Q is initialized to the unit matrix and the matrix Q
*>                 of left Schur vectors of (A,B) is returned;
*>          = 'V': Q must contain an unitary matrix Q1 on entry and
*>                 the product Q1*Q is returned.
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*>          WANTZ is CHARACTER*1
*>          = 'N': Right Schur vectors (Z) are not computed;
*>          = 'I': Z is initialized to the unit matrix and the matrix Z
*>                 of right Schur vectors of (A,B) is returned;
*>          = 'V': Z must contain an unitary matrix Z1 on entry and
*>                 the product Z1*Z is returned.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A, B, Q, and Z.  N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*>          ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*>          IHI is INTEGER
*>          ILO and IHI mark the rows and columns of A which are in
*>          Hessenberg form.  It is assumed that A is already upper
*>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
*>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA, N)
*>          On entry, the N-by-N upper Hessenberg matrix A.
*>          On exit, if JOB = 'S', A contains the upper triangular
*>          matrix S from the generalized Schur factorization.
*>          If JOB = 'E', the diagonal blocks of A match those of S, but
*>          the rest of A is unspecified.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB, N)
*>          On entry, the N-by-N upper triangular matrix B.
*>          On exit, if JOB = 'S', B contains the upper triangular
*>          matrix P from the generalized Schur factorization;
*>          If JOB = 'E', the diagonal blocks of B match those of P, but
*>          the rest of B is unspecified.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*>          ALPHA is COMPLEX*16 array, dimension (N)
*>          Each scalar alpha defining an eigenvalue
*>          of GNEP.
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is COMPLEX*16 array, dimension (N)
*>          The scalars beta that define the eigenvalues of GNEP.
*>          Together, the quantities alpha = ALPHA(j) and
*>          beta = BETA(j) represent the j-th eigenvalue of the matrix
*>          pair (A,B), in one of the forms lambda = alpha/beta or
*>          mu = beta/alpha.  Since either lambda or mu may overflow,
*>          they should not, in general, be computed.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is COMPLEX*16 array, dimension (LDQ, N)
*>          On entry, if COMPQ = 'V', the unitary matrix Q1 used in
*>          the reduction of (A,B) to generalized Hessenberg form.
*>          On exit, if COMPQ = 'I', the unitary matrix of left Schur
*>          vectors of (A,B), and if COMPQ = 'V', the unitary matrix
*>          of left Schur vectors of (A,B).
*>          Not referenced if COMPQ = 'N'.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q.  LDQ >= 1.
*>          If COMPQ='V' or 'I', then LDQ >= N.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is COMPLEX*16 array, dimension (LDZ, N)
*>          On entry, if COMPZ = 'V', the unitary matrix Z1 used in
*>          the reduction of (A,B) to generalized Hessenberg form.
*>          On exit, if COMPZ = 'I', the unitary matrix of
*>          right Schur vectors of (H,T), and if COMPZ = 'V', the
*>          unitary matrix of right Schur vectors of (A,B).
*>          Not referenced if COMPZ = 'N'.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1.
*>          If COMPZ='V' or 'I', then LDZ >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,N).
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[in] REC
*> \verbatim
*>          REC is INTEGER
*>             REC indicates the current recursion level. Should be set
*>             to 0 on first call.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          = 1,...,N: the QZ iteration did not converge.  (A,B) is not
*>                     in Schur form, but ALPHA(i) and
*>                     BETA(i), i=INFO+1,...,N should be correct.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup laqz0
*>
*  =====================================================================
      RECURSIVE SUBROUTINE ZLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI,
     $                             A,
     $                             LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z,
     $                             LDZ, WORK, LWORK, RWORK, REC,
     $                             INFO )
      IMPLICIT NONE

*     Arguments
      CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
      INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
     $         REC
      INTEGER, INTENT( OUT ) :: INFO
      COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
     $   * ), Z( LDZ, * ), ALPHA( * ), BETA( * ), WORK( * )
      DOUBLE PRECISION, INTENT( OUT ) :: RWORK( * )

*     Parameters
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0,
     $                     0.0D+0 ) )
      DOUBLE PRECISION :: ZERO, ONE, HALF
      PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )

*     Local scalars
      DOUBLE PRECISION :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR,
     $                    BNORM, BTOL
      COMPLEX*16 :: ESHIFT, S1, TEMP
      INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
     $           NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
     $           NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
     $           ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
     $           NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST
      LOGICAL :: ILSCHUR, ILQ, ILZ
      CHARACTER :: JBCMPZ*3

*     External Functions
      EXTERNAL :: XERBLA, ZHGEQZ, ZLAQZ2, ZLAQZ3, ZLASET,
     $            ZLARTG, ZROT
      DOUBLE PRECISION, EXTERNAL :: DLAMCH, ZLANHS
      LOGICAL, EXTERNAL :: LSAME
      INTEGER, EXTERNAL :: ILAENV

*
*     Decode wantS,wantQ,wantZ
*      
      IF( LSAME( WANTS, 'E' ) ) THEN
         ILSCHUR = .FALSE.
         IWANTS = 1
      ELSE IF( LSAME( WANTS, 'S' ) ) THEN
         ILSCHUR = .TRUE.
         IWANTS = 2
      ELSE
         IWANTS = 0
      END IF

      IF( LSAME( WANTQ, 'N' ) ) THEN
         ILQ = .FALSE.
         IWANTQ = 1
      ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
         ILQ = .TRUE.
         IWANTQ = 2
      ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
         ILQ = .TRUE.
         IWANTQ = 3
      ELSE
         IWANTQ = 0
      END IF

      IF( LSAME( WANTZ, 'N' ) ) THEN
         ILZ = .FALSE.
         IWANTZ = 1
      ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
         ILZ = .TRUE.
         IWANTZ = 2
      ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
         ILZ = .TRUE.
         IWANTZ = 3
      ELSE
         IWANTZ = 0
      END IF
*
*     Check Argument Values
*
      INFO = 0
      IF( IWANTS.EQ.0 ) THEN
         INFO = -1
      ELSE IF( IWANTQ.EQ.0 ) THEN
         INFO = -2
      ELSE IF( IWANTZ.EQ.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( ILO.LT.1 ) THEN
         INFO = -5
      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.N ) THEN
         INFO = -8
      ELSE IF( LDB.LT.N ) THEN
         INFO = -10
      ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
         INFO = -15
      ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLAQZ0', -INFO )
         RETURN
      END IF
   
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         WORK( 1 ) = DBLE( 1 )
         RETURN
      END IF

*
*     Get the parameters
*
      JBCMPZ( 1:1 ) = WANTS
      JBCMPZ( 2:2 ) = WANTQ
      JBCMPZ( 3:3 ) = WANTZ

      NMIN = ILAENV( 12, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )

      NWR = ILAENV( 13, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
      NWR = MAX( 2, NWR )
      NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )

      NIBBLE = ILAENV( 14, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
      
      NSR = ILAENV( 15, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
      NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
      NSR = MAX( 2, NSR-MOD( NSR, 2 ) )

      RCOST = ILAENV( 17, 'ZLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
      ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) )
      ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
      NBR = NSR+ITEMP1

      IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
         CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B,
     $                LDB,
     $                ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
     $                INFO )
         RETURN
      END IF

*
*     Find out required workspace
*

*     Workspace query to ZLAQZ2
      NW = MAX( NWR, NMIN )
      CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
     $             LDB,
     $             Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHA,
     $             BETA, WORK, NW, WORK, NW, WORK, -1, RWORK, REC,
     $             AED_INFO )
      ITEMP1 = INT( WORK( 1 ) )
*     Workspace query to ZLAQZ3
      CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHA,
     $             BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK, NBR,
     $             WORK, NBR, WORK, -1, SWEEP_INFO )
      ITEMP2 = INT( WORK( 1 ) )

      LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
      IF ( LWORK .EQ.-1 ) THEN
         WORK( 1 ) = DBLE( LWORKREQ )
         RETURN
      ELSE IF ( LWORK .LT. LWORKREQ ) THEN
         INFO = -19
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZLAQZ0', INFO )
         RETURN
      END IF
*
*     Initialize Q and Z
*
      IF( IWANTQ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Q,
     $    LDQ )
      IF( IWANTZ.EQ.3 ) CALL ZLASET( 'FULL', N, N, CZERO, CONE, Z,
     $    LDZ )

*     Get machine constants
      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
      SAFMAX = ONE/SAFMIN
      ULP = DLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*( DBLE( N )/ULP )

      BNORM = ZLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, RWORK )
      BTOL = MAX( SAFMIN, ULP*BNORM )

      ISTART = ILO
      ISTOP = IHI
      MAXIT = 30*( IHI-ILO+1 )
      LD = 0
 
      DO IITER = 1, MAXIT
         IF( IITER .GE. MAXIT ) THEN
            INFO = ISTOP+1
            GOTO 80
         END IF
         IF ( ISTART+1 .GE. ISTOP ) THEN
            ISTOP = ISTART
            EXIT
         END IF

*        Check deflations at the end
         IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
     $      ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
     $      ISTOP-1 ) ) ) ) ) THEN
            A( ISTOP, ISTOP-1 ) = CZERO
            ISTOP = ISTOP-1
            LD = 0
            ESHIFT = CZERO
         END IF
*        Check deflations at the start
         IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
     $      ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
     $      ISTART+1 ) ) ) ) ) THEN
            A( ISTART+1, ISTART ) = CZERO
            ISTART = ISTART+1
            LD = 0
            ESHIFT = CZERO
         END IF

         IF ( ISTART+1 .GE. ISTOP ) THEN
            EXIT
         END IF

*        Check interior deflations
         ISTART2 = ISTART
         DO K = ISTOP, ISTART+1, -1
            IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
     $         K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
               A( K, K-1 ) = CZERO
               ISTART2 = K
               EXIT
            END IF
         END DO

*        Get range to apply rotations to
         IF ( ILSCHUR ) THEN
            ISTARTM = 1
            ISTOPM = N
         ELSE
            ISTARTM = ISTART2
            ISTOPM = ISTOP
         END IF

*        Check infinite eigenvalues, this is done without blocking so might
*        slow down the method when many infinite eigenvalues are present
         K = ISTOP
         DO WHILE ( K.GE.ISTART2 )

            IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
*              A diagonal element of B is negligible, move it
*              to the top and deflate it
               
               DO K2 = K, ISTART2+1, -1
                  CALL ZLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1,
     $                         S1,
     $                         TEMP )
                  B( K2-1, K2 ) = TEMP
                  B( K2-1, K2-1 ) = CZERO

                  CALL ZROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
     $                       B( ISTARTM, K2-1 ), 1, C1, S1 )
                  CALL ZROT( MIN( K2+1, ISTOP )-ISTARTM+1,
     $                       A( ISTARTM,
     $                       K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
                  IF ( ILZ ) THEN
                     CALL ZROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1,
     $                          C1,
     $                          S1 )
                  END IF

                  IF( K2.LT.ISTOP ) THEN
                     CALL ZLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
     $                            S1, TEMP )
                     A( K2, K2-1 ) = TEMP
                     A( K2+1, K2-1 ) = CZERO

                     CALL ZROT( ISTOPM-K2+1, A( K2, K2 ), LDA,
     $                          A( K2+1,
     $                          K2 ), LDA, C1, S1 )
                     CALL ZROT( ISTOPM-K2+1, B( K2, K2 ), LDB,
     $                          B( K2+1,
     $                          K2 ), LDB, C1, S1 )
                     IF( ILQ ) THEN
                        CALL ZROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
     $                             C1, DCONJG( S1 ) )
                     END IF
                  END IF

               END DO

               IF( ISTART2.LT.ISTOP )THEN
                  CALL ZLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
     $                         ISTART2 ), C1, S1, TEMP )
                  A( ISTART2, ISTART2 ) = TEMP
                  A( ISTART2+1, ISTART2 ) = CZERO

                  CALL ZROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
     $                       ISTART2+1 ), LDA, A( ISTART2+1,
     $                       ISTART2+1 ), LDA, C1, S1 )
                  CALL ZROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
     $                       ISTART2+1 ), LDB, B( ISTART2+1,
     $                       ISTART2+1 ), LDB, C1, S1 )
                  IF( ILQ ) THEN
                     CALL ZROT( N, Q( 1, ISTART2 ), 1, Q( 1,
     $                          ISTART2+1 ), 1, C1, DCONJG( S1 ) )
                  END IF
               END IF

               ISTART2 = ISTART2+1
   
            END IF
            K = K-1
         END DO

*        istart2 now points to the top of the bottom right
*        unreduced Hessenberg block
         IF ( ISTART2 .GE. ISTOP ) THEN
            ISTOP = ISTART2-1
            LD = 0
            ESHIFT = CZERO
            CYCLE
         END IF

         NW = NWR
         NSHIFTS = NSR
         NBLOCK = NBR

         IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
*           Setting nw to the size of the subblock will make AED deflate
*           all the eigenvalues. This is slightly more efficient than just
*           using qz_small because the off diagonal part gets updated via BLAS.
            IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
               NW = ISTOP-ISTART+1
               ISTART2 = ISTART
            ELSE
               NW = ISTOP-ISTART2+1
            END IF
         END IF

*
*        Time for AED
*
         CALL ZLAQZ2( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A,
     $                LDA,
     $                B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
     $                ALPHA, BETA, WORK, NW, WORK( NW**2+1 ), NW,
     $                WORK( 2*NW**2+1 ), LWORK-2*NW**2, RWORK, REC,
     $                AED_INFO )

         IF ( N_DEFLATED > 0 ) THEN
            ISTOP = ISTOP-N_DEFLATED
            LD = 0
            ESHIFT = CZERO
         END IF

         IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
     $      ISTOP-ISTART2+1 .LT. NMIN ) THEN
*           AED has uncovered many eigenvalues. Skip a QZ sweep and run
*           AED again.
            CYCLE
         END IF

         LD = LD+1

         NS = MIN( NSHIFTS, ISTOP-ISTART2 )
         NS = MIN( NS, N_UNDEFLATED )
         SHIFTPOS = ISTOP-N_UNDEFLATED+1

         IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
* 
*           Exceptional shift.  Chosen for no particularly good reason.
*
            IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP,
     $         ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
               ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
            ELSE
               ESHIFT = ESHIFT+CONE/( SAFMIN*DBLE( MAXIT ) )
            END IF
            ALPHA( SHIFTPOS ) = CONE
            BETA( SHIFTPOS ) = ESHIFT
            NS = 1
         END IF

*
*        Time for a QZ sweep
*
         CALL ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS,
     $                NBLOCK,
     $                ALPHA( SHIFTPOS ), BETA( SHIFTPOS ), A, LDA, B,
     $                LDB, Q, LDQ, Z, LDZ, WORK, NBLOCK, WORK( NBLOCK**
     $                2+1 ), NBLOCK, WORK( 2*NBLOCK**2+1 ),
     $                LWORK-2*NBLOCK**2, SWEEP_INFO )

      END DO

*
*     Call ZHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
*     If all the eigenvalues have been found, ZHGEQZ will not do any iterations
*     and only normalize the blocks. In case of a rare convergence failure,
*     the single shift might perform better.
*
   80 CALL ZHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
     $             ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK,
     $             NORM_INFO )
      
      INFO = NORM_INFO

      END SUBROUTINE