numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zlarfy.f 3965B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
*> \brief \b ZLARFY
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INCV, LDC, N
*       COMPLEX*16         TAU
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLARFY applies an elementary reflector, or Householder matrix, H,
*> to an n x n Hermitian matrix C, from both the left and the right.
*>
*> H is represented in the form
*>
*>    H = I - tau * v * v'
*>
*> where  tau  is a scalar and  v  is a vector.
*>
*> If  tau  is  zero, then  H  is taken to be the unit matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          Hermitian matrix C is stored.
*>          = 'U':  Upper triangle
*>          = 'L':  Lower triangle
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix C.  N >= 0.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*>          V is COMPLEX*16 array, dimension
*>                  (1 + (N-1)*abs(INCV))
*>          The vector v as described above.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*>          INCV is INTEGER
*>          The increment between successive elements of v.  INCV must
*>          not be zero.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX*16
*>          The value tau as described above.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC, N)
*>          On entry, the matrix C.
*>          On exit, C is overwritten by H * C * H'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larfy
*
*  =====================================================================
      SUBROUTINE ZLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INCV, LDC, N
      COMPLEX*16         TAU
*     ..
*     .. Array Arguments ..
      COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ONE, ZERO, HALF
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
     $                   ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZHEMV, ZHER2
*     ..
*     .. External Functions ..
      COMPLEX*16         ZDOTC
      EXTERNAL           ZDOTC
*     ..
*     .. Executable Statements ..
*
      IF( TAU.EQ.ZERO )
     $   RETURN
*
*     Form  w:= C * v
*
      CALL ZHEMV( UPLO, N, ONE, C, LDC, V, INCV, ZERO, WORK, 1 )
*
      ALPHA = -HALF*TAU*ZDOTC( N, WORK, 1, V, INCV )
      CALL ZAXPY( N, ALPHA, V, INCV, WORK, 1 )
*
*     C := C - v * w' - w * v'
*
      CALL ZHER2( UPLO, N, -TAU, V, INCV, WORK, 1, C, LDC )
*
      RETURN
*
*     End of ZLARFY
*
      END