numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zlargv.f | 8961B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
*> \brief \b ZLARGV generates a vector of plane rotations with real cosines and complex sines. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLARGV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlargv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlargv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlargv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) * * .. Scalar Arguments .. * INTEGER INCC, INCX, INCY, N * .. * .. Array Arguments .. * DOUBLE PRECISION C( * ) * COMPLEX*16 X( * ), Y( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLARGV generates a vector of complex plane rotations with real *> cosines, determined by elements of the complex vectors x and y. *> For i = 1,2,...,n *> *> ( c(i) s(i) ) ( x(i) ) = ( r(i) ) *> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) *> *> where c(i)**2 + ABS(s(i))**2 = 1 *> *> The following conventions are used (these are the same as in ZLARTG, *> but differ from the BLAS1 routine ZROTG): *> If y(i)=0, then c(i)=1 and s(i)=0. *> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of plane rotations to be generated. *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is COMPLEX*16 array, dimension (1+(N-1)*INCX) *> On entry, the vector x. *> On exit, x(i) is overwritten by r(i), for i = 1,...,n. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> The increment between elements of X. INCX > 0. *> \endverbatim *> *> \param[in,out] Y *> \verbatim *> Y is COMPLEX*16 array, dimension (1+(N-1)*INCY) *> On entry, the vector y. *> On exit, the sines of the plane rotations. *> \endverbatim *> *> \param[in] INCY *> \verbatim *> INCY is INTEGER *> The increment between elements of Y. INCY > 0. *> \endverbatim *> *> \param[out] C *> \verbatim *> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) *> The cosines of the plane rotations. *> \endverbatim *> *> \param[in] INCC *> \verbatim *> INCC is INTEGER *> The increment between elements of C. INCC > 0. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup largv * *> \par Further Details: * ===================== *> *> \verbatim *> *> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel *> *> This version has a few statements commented out for thread safety *> (machine parameters are computed on each entry). 10 feb 03, SJH. *> \endverbatim *> * ===================================================================== SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INCC, INCX, INCY, N * .. * .. Array Arguments .. DOUBLE PRECISION C( * ) COMPLEX*16 X( * ), Y( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION TWO, ONE, ZERO PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 ) COMPLEX*16 CZERO PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. * LOGICAL FIRST INTEGER COUNT, I, IC, IX, IY, J DOUBLE PRECISION CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN, $ SAFMN2, SAFMX2, SCALE COMPLEX*16 F, FF, FS, G, GS, R, SN * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLAPY2 EXTERNAL DLAMCH, DLAPY2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG, $ MAX, SQRT * .. * .. Statement Functions .. DOUBLE PRECISION ABS1, ABSSQ * .. * .. Save statement .. * SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 * .. * .. Data statements .. * DATA FIRST / .TRUE. / * .. * .. Statement Function definitions .. ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) ) ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2 * .. * .. Executable Statements .. * * IF( FIRST ) THEN * FIRST = .FALSE. SAFMIN = DLAMCH( 'S' ) EPS = DLAMCH( 'E' ) SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / $ LOG( DLAMCH( 'B' ) ) / TWO ) SAFMX2 = ONE / SAFMN2 * END IF IX = 1 IY = 1 IC = 1 DO 60 I = 1, N F = X( IX ) G = Y( IY ) * * Use identical algorithm as in ZLARTG * SCALE = MAX( ABS1( F ), ABS1( G ) ) FS = F GS = G COUNT = 0 IF( SCALE.GE.SAFMX2 ) THEN 10 CONTINUE COUNT = COUNT + 1 FS = FS*SAFMN2 GS = GS*SAFMN2 SCALE = SCALE*SAFMN2 IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 ) $ GO TO 10 ELSE IF( SCALE.LE.SAFMN2 ) THEN IF( G.EQ.CZERO ) THEN CS = ONE SN = CZERO R = F GO TO 50 END IF 20 CONTINUE COUNT = COUNT - 1 FS = FS*SAFMX2 GS = GS*SAFMX2 SCALE = SCALE*SAFMX2 IF( SCALE.LE.SAFMN2 ) $ GO TO 20 END IF F2 = ABSSQ( FS ) G2 = ABSSQ( GS ) IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN * * This is a rare case: F is very small. * IF( F.EQ.CZERO ) THEN CS = ZERO R = DLAPY2( DBLE( G ), DIMAG( G ) ) * Do complex/real division explicitly with two real * divisions D = DLAPY2( DBLE( GS ), DIMAG( GS ) ) SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D ) GO TO 50 END IF F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) ) * G2 and G2S are accurate * G2 is at least SAFMIN, and G2S is at least SAFMN2 G2S = SQRT( G2 ) * Error in CS from underflow in F2S is at most * UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS * If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, * and so CS .lt. sqrt(SAFMIN) * If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN * and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) * Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S CS = F2S / G2S * Make sure abs(FF) = 1 * Do complex/real division explicitly with 2 real divisions IF( ABS1( F ).GT.ONE ) THEN D = DLAPY2( DBLE( F ), DIMAG( F ) ) FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D ) ELSE DR = SAFMX2*DBLE( F ) DI = SAFMX2*DIMAG( F ) D = DLAPY2( DR, DI ) FF = DCMPLX( DR / D, DI / D ) END IF SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S ) R = CS*F + SN*G ELSE * * This is the most common case. * Neither F2 nor F2/G2 are less than SAFMIN * F2S cannot overflow, and it is accurate * F2S = SQRT( ONE+G2 / F2 ) * Do the F2S(real)*FS(complex) multiply with two real * multiplies R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) ) CS = ONE / F2S D = F2 + G2 * Do complex/real division explicitly with two real divisions SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D ) SN = SN*DCONJG( GS ) IF( COUNT.NE.0 ) THEN IF( COUNT.GT.0 ) THEN DO 30 J = 1, COUNT R = R*SAFMX2 30 CONTINUE ELSE DO 40 J = 1, -COUNT R = R*SAFMN2 40 CONTINUE END IF END IF END IF 50 CONTINUE C( IC ) = CS Y( IY ) = SN X( IX ) = R IC = IC + INCC IY = IY + INCY IX = IX + INCX 60 CONTINUE RETURN * * End of ZLARGV * END