numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zlarnv.f 5538B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
*> \brief \b ZLARNV returns a vector of random numbers from a uniform or normal distribution.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLARNV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarnv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarnv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarnv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLARNV( IDIST, ISEED, N, X )
*
*       .. Scalar Arguments ..
*       INTEGER            IDIST, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       COMPLEX*16         X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLARNV returns a vector of n random complex numbers from a uniform or
*> normal distribution.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] IDIST
*> \verbatim
*>          IDIST is INTEGER
*>          Specifies the distribution of the random numbers:
*>          = 1:  real and imaginary parts each uniform (0,1)
*>          = 2:  real and imaginary parts each uniform (-1,1)
*>          = 3:  real and imaginary parts each normal (0,1)
*>          = 4:  uniformly distributed on the disc abs(z) < 1
*>          = 5:  uniformly distributed on the circle abs(z) = 1
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed of the random number generator; the array
*>          elements must be between 0 and 4095, and ISEED(4) must be
*>          odd.
*>          On exit, the seed is updated.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of random numbers to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension (N)
*>          The generated random numbers.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larnv
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  This routine calls the auxiliary routine DLARUV to generate random
*>  real numbers from a uniform (0,1) distribution, in batches of up to
*>  128 using vectorisable code. The Box-Muller method is used to
*>  transform numbers from a uniform to a normal distribution.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZLARNV( IDIST, ISEED, N, X )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            IDIST, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      COMPLEX*16         X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
      INTEGER            LV
      PARAMETER          ( LV = 128 )
      DOUBLE PRECISION   TWOPI
      PARAMETER  ( TWOPI = 6.28318530717958647692528676655900576839D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IL, IV
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   U( LV )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, EXP, LOG, MIN, SQRT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARUV
*     ..
*     .. Executable Statements ..
*
      DO 60 IV = 1, N, LV / 2
         IL = MIN( LV / 2, N-IV+1 )
*
*        Call DLARUV to generate 2*IL real numbers from a uniform (0,1)
*        distribution (2*IL <= LV)
*
         CALL DLARUV( ISEED, 2*IL, U )
*
         IF( IDIST.EQ.1 ) THEN
*
*           Copy generated numbers
*
            DO 10 I = 1, IL
               X( IV+I-1 ) = DCMPLX( U( 2*I-1 ), U( 2*I ) )
   10       CONTINUE
         ELSE IF( IDIST.EQ.2 ) THEN
*
*           Convert generated numbers to uniform (-1,1) distribution
*
            DO 20 I = 1, IL
               X( IV+I-1 ) = DCMPLX( TWO*U( 2*I-1 )-ONE,
     $                       TWO*U( 2*I )-ONE )
   20       CONTINUE
         ELSE IF( IDIST.EQ.3 ) THEN
*
*           Convert generated numbers to normal (0,1) distribution
*
            DO 30 I = 1, IL
               X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
     $                       EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) )
   30       CONTINUE
         ELSE IF( IDIST.EQ.4 ) THEN
*
*           Convert generated numbers to complex numbers uniformly
*           distributed on the unit disk
*
            DO 40 I = 1, IL
               X( IV+I-1 ) = SQRT( U( 2*I-1 ) )*
     $                       EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) )
   40       CONTINUE
         ELSE IF( IDIST.EQ.5 ) THEN
*
*           Convert generated numbers to complex numbers uniformly
*           distributed on the unit circle
*
            DO 50 I = 1, IL
               X( IV+I-1 ) = EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) )
   50       CONTINUE
         END IF
   60 CONTINUE
      RETURN
*
*     End of ZLARNV
*
      END