numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zlarnv.f | 5538B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
*> \brief \b ZLARNV returns a vector of random numbers from a uniform or normal distribution. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZLARNV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarnv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarnv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarnv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZLARNV( IDIST, ISEED, N, X ) * * .. Scalar Arguments .. * INTEGER IDIST, N * .. * .. Array Arguments .. * INTEGER ISEED( 4 ) * COMPLEX*16 X( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZLARNV returns a vector of n random complex numbers from a uniform or *> normal distribution. *> \endverbatim * * Arguments: * ========== * *> \param[in] IDIST *> \verbatim *> IDIST is INTEGER *> Specifies the distribution of the random numbers: *> = 1: real and imaginary parts each uniform (0,1) *> = 2: real and imaginary parts each uniform (-1,1) *> = 3: real and imaginary parts each normal (0,1) *> = 4: uniformly distributed on the disc abs(z) < 1 *> = 5: uniformly distributed on the circle abs(z) = 1 *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator; the array *> elements must be between 0 and 4095, and ISEED(4) must be *> odd. *> On exit, the seed is updated. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of random numbers to be generated. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (N) *> The generated random numbers. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup larnv * *> \par Further Details: * ===================== *> *> \verbatim *> *> This routine calls the auxiliary routine DLARUV to generate random *> real numbers from a uniform (0,1) distribution, in batches of up to *> 128 using vectorisable code. The Box-Muller method is used to *> transform numbers from a uniform to a normal distribution. *> \endverbatim *> * ===================================================================== SUBROUTINE ZLARNV( IDIST, ISEED, N, X ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER IDIST, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) COMPLEX*16 X( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) INTEGER LV PARAMETER ( LV = 128 ) DOUBLE PRECISION TWOPI PARAMETER ( TWOPI = 6.28318530717958647692528676655900576839D+0 ) * .. * .. Local Scalars .. INTEGER I, IL, IV * .. * .. Local Arrays .. DOUBLE PRECISION U( LV ) * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, EXP, LOG, MIN, SQRT * .. * .. External Subroutines .. EXTERNAL DLARUV * .. * .. Executable Statements .. * DO 60 IV = 1, N, LV / 2 IL = MIN( LV / 2, N-IV+1 ) * * Call DLARUV to generate 2*IL real numbers from a uniform (0,1) * distribution (2*IL <= LV) * CALL DLARUV( ISEED, 2*IL, U ) * IF( IDIST.EQ.1 ) THEN * * Copy generated numbers * DO 10 I = 1, IL X( IV+I-1 ) = DCMPLX( U( 2*I-1 ), U( 2*I ) ) 10 CONTINUE ELSE IF( IDIST.EQ.2 ) THEN * * Convert generated numbers to uniform (-1,1) distribution * DO 20 I = 1, IL X( IV+I-1 ) = DCMPLX( TWO*U( 2*I-1 )-ONE, $ TWO*U( 2*I )-ONE ) 20 CONTINUE ELSE IF( IDIST.EQ.3 ) THEN * * Convert generated numbers to normal (0,1) distribution * DO 30 I = 1, IL X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )* $ EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) ) 30 CONTINUE ELSE IF( IDIST.EQ.4 ) THEN * * Convert generated numbers to complex numbers uniformly * distributed on the unit disk * DO 40 I = 1, IL X( IV+I-1 ) = SQRT( U( 2*I-1 ) )* $ EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) ) 40 CONTINUE ELSE IF( IDIST.EQ.5 ) THEN * * Convert generated numbers to complex numbers uniformly * distributed on the unit circle * DO 50 I = 1, IL X( IV+I-1 ) = EXP( DCMPLX( ZERO, TWOPI*U( 2*I ) ) ) 50 CONTINUE END IF 60 CONTINUE RETURN * * End of ZLARNV * END