numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zpptri.f | 5131B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
*> \brief \b ZPPTRI * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZPPTRI + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptri.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptri.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptri.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZPPTRI( UPLO, N, AP, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, N * .. * .. Array Arguments .. * COMPLEX*16 AP( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZPPTRI computes the inverse of a complex Hermitian positive definite *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H *> computed by ZPPTRF. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangular factor is stored in AP; *> = 'L': Lower triangular factor is stored in AP. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] AP *> \verbatim *> AP is COMPLEX*16 array, dimension (N*(N+1)/2) *> On entry, the triangular factor U or L from the Cholesky *> factorization A = U**H*U or A = L*L**H, packed columnwise as *> a linear array. The j-th column of U or L is stored in the *> array AP as follows: *> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. *> *> On exit, the upper or lower triangle of the (Hermitian) *> inverse of A, overwriting the input factor U or L. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, the (i,i) element of the factor U or L is *> zero, and the inverse could not be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup pptri * * ===================================================================== SUBROUTINE ZPPTRI( UPLO, N, AP, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, N * .. * .. Array Arguments .. COMPLEX*16 AP( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, JC, JJ, JJN DOUBLE PRECISION AJJ * .. * .. External Functions .. LOGICAL LSAME COMPLEX*16 ZDOTC EXTERNAL LSAME, ZDOTC * .. * .. External Subroutines .. EXTERNAL XERBLA, ZDSCAL, ZHPR, ZTPMV, ZTPTRI * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZPPTRI', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Invert the triangular Cholesky factor U or L. * CALL ZTPTRI( UPLO, 'Non-unit', N, AP, INFO ) IF( INFO.GT.0 ) $ RETURN IF( UPPER ) THEN * * Compute the product inv(U) * inv(U)**H. * JJ = 0 DO 10 J = 1, N JC = JJ + 1 JJ = JJ + J IF( J.GT.1 ) $ CALL ZHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP ) AJJ = DBLE( AP( JJ ) ) CALL ZDSCAL( J, AJJ, AP( JC ), 1 ) 10 CONTINUE * ELSE * * Compute the product inv(L)**H * inv(L). * JJ = 1 DO 20 J = 1, N JJN = JJ + N - J + 1 AP( JJ ) = DBLE( ZDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), $ 1 ) ) IF( J.LT.N ) $ CALL ZTPMV( 'Lower', 'Conjugate transpose', $ 'Non-unit', $ N-J, AP( JJN ), AP( JJ+1 ), 1 ) JJ = JJN 20 CONTINUE END IF * RETURN * * End of ZPPTRI * END