numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/zrscl.f 6357B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
*> \brief \b ZDRSCL multiplies a vector by the reciprocal of a real scalar.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZDRSCL + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zdrscl.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zdrscl.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zdrscl.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZRSCL( N, A, X, INCX )
*
*       .. Scalar Arguments ..
*       INTEGER            INCX, N
*       COMPLEX*16         A
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZRSCL multiplies an n-element complex vector x by the complex scalar
*> 1/a.  This is done without overflow or underflow as long as
*> the final result x/a does not overflow or underflow.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of components of the vector x.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16
*>          The scalar a which is used to divide each component of x.
*>          A must not be 0, or the subroutine will divide by zero.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*>          X is COMPLEX*16 array, dimension
*>                         (1+(N-1)*abs(INCX))
*>          The n-element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*>          INCX is INTEGER
*>          The increment between successive values of the vector SX.
*>          > 0:  SX(1) = X(1) and SX(1+(i-1)*INCX) = x(i),     1< i<= n
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERauxiliary
*
*  =====================================================================
      SUBROUTINE ZRSCL( N, A, X, INCX )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      COMPLEX*16         A
*     ..
*     .. Array Arguments ..
      COMPLEX*16         X( * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR, UI
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      COMPLEX*16         ZLADIV
      EXTERNAL           DLAMCH, ZLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, ZDSCAL, ZDRSCL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
*     Get machine parameters
*
      SAFMIN = DLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      OV   = DLAMCH( 'O' )
*
*     Initialize constants related to A.
*
      AR = DBLE( A )
      AI = DIMAG( A )
      ABSR = ABS( AR )
      ABSI = ABS( AI )
*
      IF( AI.EQ.ZERO ) THEN
*        If alpha is real, then we can use csrscl
         CALL ZDRSCL( N, AR, X, INCX )
*
      ELSE IF( AR.EQ.ZERO ) THEN
*        If alpha has a zero real part, then we follow the same rules as if
*        alpha were real.
         IF( ABSI.GT.SAFMAX ) THEN
            CALL ZDSCAL( N, SAFMIN, X, INCX )
            CALL ZSCAL( N, DCMPLX( ZERO, -SAFMAX / AI ), X, INCX )
         ELSE IF( ABSI.LT.SAFMIN ) THEN
            CALL ZSCAL( N, DCMPLX( ZERO, -SAFMIN / AI ), X, INCX )
            CALL ZDSCAL( N, SAFMAX, X, INCX )
         ELSE
            CALL ZSCAL( N, DCMPLX( ZERO, -ONE / AI ), X, INCX )
         END IF
*
      ELSE
*        The following numbers can be computed.
*        They are the inverse of the real and imaginary parts of 1/alpha.
*        Note that a and b are always different from zero.
*        NaNs are only possible if either:
*        1. alphaR or alphaI is NaN.
*        2. alphaR and alphaI are both infinite, in which case it makes sense
*        to propagate a NaN.
         UR = AR + AI * ( AI / AR )
         UI = AI + AR * ( AR / AI )
*
         IF( (ABS( UR ).LT.SAFMIN).OR.(ABS( UI ).LT.SAFMIN) ) THEN
*           This means that both alphaR and alphaI are very small.
            CALL ZSCAL( N, DCMPLX( SAFMIN / UR, -SAFMIN / UI ), X,
     $                  INCX )
            CALL ZDSCAL( N, SAFMAX, X, INCX )
         ELSE IF( (ABS( UR ).GT.SAFMAX).OR.(ABS( UI ).GT.SAFMAX) ) THEN
            IF( (ABSR.GT.OV).OR.(ABSI.GT.OV) ) THEN
*              This means that a and b are both Inf. No need for scaling.
               CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X,
     $                     INCX )
            ELSE
               CALL ZDSCAL( N, SAFMIN, X, INCX )
               IF( (ABS( UR ).GT.OV).OR.(ABS( UI ).GT.OV) ) THEN
*                 Infs were generated. We do proper scaling to avoid them.
                  IF( ABSR.GE.ABSI ) THEN
*                    ABS( UR ) <= ABS( UI )
                     UR = (SAFMIN * AR) + SAFMIN * (AI * ( AI / AR ))
                     UI = (SAFMIN * AI) + AR * ( (SAFMIN * AR) / AI )
                  ELSE
*                    ABS( UR ) > ABS( UI )
                     UR = (SAFMIN * AR) + AI * ( (SAFMIN * AI) / AR )
                     UI = (SAFMIN * AI) + SAFMIN * (AR * ( AR / AI ))
                  END IF
                  CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X,
     $                        INCX )
               ELSE
                  CALL ZSCAL( N, DCMPLX( SAFMAX / UR, -SAFMAX / UI ),
     $                        X, INCX )
               END IF
            END IF
         ELSE
            CALL ZSCAL( N, DCMPLX( ONE / UR, -ONE / UI ), X, INCX )
         END IF
      END IF
*
      RETURN
*
*     End of ZRSCL
*
      END