numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zspsv.f | 6863B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
*> \brief <b> ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZSPSV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspsv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspsv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspsv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX*16 AP( * ), B( LDB, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZSPSV computes the solution to a complex system of linear equations *> A * X = B, *> where A is an N-by-N symmetric matrix stored in packed format and X *> and B are N-by-NRHS matrices. *> *> The diagonal pivoting method is used to factor A as *> A = U * D * U**T, if UPLO = 'U', or *> A = L * D * L**T, if UPLO = 'L', *> where U (or L) is a product of permutation and unit upper (lower) *> triangular matrices, D is symmetric and block diagonal with 1-by-1 *> and 2-by-2 diagonal blocks. The factored form of A is then used to *> solve the system of equations A * X = B. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangle of A is stored; *> = 'L': Lower triangle of A is stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrix B. NRHS >= 0. *> \endverbatim *> *> \param[in,out] AP *> \verbatim *> AP is COMPLEX*16 array, dimension (N*(N+1)/2) *> On entry, the upper or lower triangle of the symmetric matrix *> A, packed columnwise in a linear array. The j-th column of A *> is stored in the array AP as follows: *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *> See below for further details. *> *> On exit, the block diagonal matrix D and the multipliers used *> to obtain the factor U or L from the factorization *> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as *> a packed triangular matrix in the same storage format as A. *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the block structure of D, as *> determined by ZSPTRF. If IPIV(k) > 0, then rows and columns *> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 *> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, *> then rows and columns k-1 and -IPIV(k) were interchanged and *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and *> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and *> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 *> diagonal block. *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB,NRHS) *> On entry, the N-by-NRHS right hand side matrix B. *> On exit, if INFO = 0, the N-by-NRHS solution matrix X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization *> has been completed, but the block diagonal matrix D is *> exactly singular, so the solution could not be *> computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hpsv * *> \par Further Details: * ===================== *> *> \verbatim *> *> The packed storage scheme is illustrated by the following example *> when N = 4, UPLO = 'U': *> *> Two-dimensional storage of the symmetric matrix A: *> *> a11 a12 a13 a14 *> a22 a23 a24 *> a33 a34 (aij = aji) *> a44 *> *> Packed storage of the upper triangle of A: *> *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] *> \endverbatim *> * ===================================================================== SUBROUTINE ZSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) * * -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 AP( * ), B( LDB, * ) * .. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZSPTRF, ZSPTRS * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( .NOT.LSAME( UPLO, 'U' ) .AND. $ .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSPSV ', -INFO ) RETURN END IF * * Compute the factorization A = U*D*U**T or A = L*D*L**T. * CALL ZSPTRF( UPLO, N, AP, IPIV, INFO ) IF( INFO.EQ.0 ) THEN * * Solve the system A*X = B, overwriting B with X. * CALL ZSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) * END IF RETURN * * End of ZSPSV * END