numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/zsytrf_rk.f | 16422B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
*> \brief \b ZSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZSYTRF_RK + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rk.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rk.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rk.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX*16 A( LDA, * ), E ( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> ZSYTRF_RK computes the factorization of a complex symmetric matrix A *> using the bounded Bunch-Kaufman (rook) diagonal pivoting method: *> *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), *> *> where U (or L) is unit upper (or lower) triangular matrix, *> U**T (or L**T) is the transpose of U (or L), P is a permutation *> matrix, P**T is the transpose of P, and D is symmetric and block *> diagonal with 1-by-1 and 2-by-2 diagonal blocks. *> *> This is the blocked version of the algorithm, calling Level 3 BLAS. *> For more information see Further Details section. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the upper or lower triangular part of the *> symmetric matrix A is stored: *> = 'U': Upper triangular *> = 'L': Lower triangular *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> On entry, the symmetric matrix A. *> If UPLO = 'U': the leading N-by-N upper triangular part *> of A contains the upper triangular part of the matrix A, *> and the strictly lower triangular part of A is not *> referenced. *> *> If UPLO = 'L': the leading N-by-N lower triangular part *> of A contains the lower triangular part of the matrix A, *> and the strictly upper triangular part of A is not *> referenced. *> *> On exit, contains: *> a) ONLY diagonal elements of the symmetric block diagonal *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); *> (superdiagonal (or subdiagonal) elements of D *> are stored on exit in array E), and *> b) If UPLO = 'U': factor U in the superdiagonal part of A. *> If UPLO = 'L': factor L in the subdiagonal part of A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[out] E *> \verbatim *> E is COMPLEX*16 array, dimension (N) *> On exit, contains the superdiagonal (or subdiagonal) *> elements of the symmetric block diagonal matrix D *> with 1-by-1 or 2-by-2 diagonal blocks, where *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. *> *> NOTE: For 1-by-1 diagonal block D(k), where *> 1 <= k <= N, the element E(k) is set to 0 in both *> UPLO = 'U' or UPLO = 'L' cases. *> \endverbatim *> *> \param[out] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> IPIV describes the permutation matrix P in the factorization *> of matrix A as follows. The absolute value of IPIV(k) *> represents the index of row and column that were *> interchanged with the k-th row and column. The value of UPLO *> describes the order in which the interchanges were applied. *> Also, the sign of IPIV represents the block structure of *> the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 *> diagonal blocks which correspond to 1 or 2 interchanges *> at each factorization step. For more info see Further *> Details section. *> *> If UPLO = 'U', *> ( in factorization order, k decreases from N to 1 ): *> a) A single positive entry IPIV(k) > 0 means: *> D(k,k) is a 1-by-1 diagonal block. *> If IPIV(k) != k, rows and columns k and IPIV(k) were *> interchanged in the matrix A(1:N,1:N); *> If IPIV(k) = k, no interchange occurred. *> *> b) A pair of consecutive negative entries *> IPIV(k) < 0 and IPIV(k-1) < 0 means: *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. *> (NOTE: negative entries in IPIV appear ONLY in pairs). *> 1) If -IPIV(k) != k, rows and columns *> k and -IPIV(k) were interchanged *> in the matrix A(1:N,1:N). *> If -IPIV(k) = k, no interchange occurred. *> 2) If -IPIV(k-1) != k-1, rows and columns *> k-1 and -IPIV(k-1) were interchanged *> in the matrix A(1:N,1:N). *> If -IPIV(k-1) = k-1, no interchange occurred. *> *> c) In both cases a) and b), always ABS( IPIV(k) ) <= k. *> *> d) NOTE: Any entry IPIV(k) is always NONZERO on output. *> *> If UPLO = 'L', *> ( in factorization order, k increases from 1 to N ): *> a) A single positive entry IPIV(k) > 0 means: *> D(k,k) is a 1-by-1 diagonal block. *> If IPIV(k) != k, rows and columns k and IPIV(k) were *> interchanged in the matrix A(1:N,1:N). *> If IPIV(k) = k, no interchange occurred. *> *> b) A pair of consecutive negative entries *> IPIV(k) < 0 and IPIV(k+1) < 0 means: *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block. *> (NOTE: negative entries in IPIV appear ONLY in pairs). *> 1) If -IPIV(k) != k, rows and columns *> k and -IPIV(k) were interchanged *> in the matrix A(1:N,1:N). *> If -IPIV(k) = k, no interchange occurred. *> 2) If -IPIV(k+1) != k+1, rows and columns *> k-1 and -IPIV(k-1) were interchanged *> in the matrix A(1:N,1:N). *> If -IPIV(k+1) = k+1, no interchange occurred. *> *> c) In both cases a) and b), always ABS( IPIV(k) ) >= k. *> *> d) NOTE: Any entry IPIV(k) is always NONZERO on output. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The length of WORK. LWORK >=1. For best performance *> LWORK >= N*NB, where NB is the block size returned *> by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; *> the routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK *> array, and no error message related to LWORK is issued *> by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> *> < 0: If INFO = -k, the k-th argument had an illegal value *> *> > 0: If INFO = k, the matrix A is singular, because: *> If UPLO = 'U': column k in the upper *> triangular part of A contains all zeros. *> If UPLO = 'L': column k in the lower *> triangular part of A contains all zeros. *> *> Therefore D(k,k) is exactly zero, and superdiagonal *> elements of column k of U (or subdiagonal elements of *> column k of L ) are all zeros. The factorization has *> been completed, but the block diagonal matrix D is *> exactly singular, and division by zero will occur if *> it is used to solve a system of equations. *> *> NOTE: INFO only stores the first occurrence of *> a singularity, any subsequent occurrence of singularity *> is not stored in INFO even though the factorization *> always completes. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup hetrf_rk * *> \par Further Details: * ===================== *> *> \verbatim *> TODO: put correct description *> \endverbatim * *> \par Contributors: * ================== *> *> \verbatim *> *> December 2016, Igor Kozachenko, *> Computer Science Division, *> University of California, Berkeley *> *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, *> School of Mathematics, *> University of Manchester *> *> \endverbatim * * ===================================================================== SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), E( * ), WORK( * ) * .. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY, UPPER INTEGER I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT, $ NB, NBMIN * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL ZLASYF_RK, ZSYTF2_RK, ZSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN INFO = -8 END IF * IF( INFO.EQ.0 ) THEN * * Determine the block size * NB = ILAENV( 1, 'ZSYTRF_RK', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSYTRF_RK', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * NBMIN = 2 LDWORK = N IF( NB.GT.1 .AND. NB.LT.N ) THEN IWS = LDWORK*NB IF( LWORK.LT.IWS ) THEN NB = MAX( LWORK / LDWORK, 1 ) NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_RK', $ UPLO, N, -1, -1, -1 ) ) END IF ELSE IWS = 1 END IF IF( NB.LT.NBMIN ) $ NB = N * IF( UPPER ) THEN * * Factorize A as U*D*U**T using the upper triangle of A * * K is the main loop index, decreasing from N to 1 in steps of * KB, where KB is the number of columns factorized by ZLASYF_RK; * KB is either NB or NB-1, or K for the last block * K = N 10 CONTINUE * * If K < 1, exit from loop * IF( K.LT.1 ) $ GO TO 15 * IF( K.GT.NB ) THEN * * Factorize columns k-kb+1:k of A and use blocked code to * update columns 1:k-kb * CALL ZLASYF_RK( UPLO, K, NB, KB, A, LDA, E, $ IPIV, WORK, LDWORK, IINFO ) ELSE * * Use unblocked code to factorize columns 1:k of A * CALL ZSYTF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO ) KB = K END IF * * Set INFO on the first occurrence of a zero pivot * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO * * No need to adjust IPIV * * * Apply permutations to the leading panel 1:k-1 * * Read IPIV from the last block factored, i.e. * indices k-kb+1:k and apply row permutations to the * last k+1 colunms k+1:N after that block * (We can do the simple loop over IPIV with decrement -1, * since the ABS value of IPIV( I ) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * IF( K.LT.N ) THEN DO I = K, ( K - KB + 1 ), -1 IP = ABS( IPIV( I ) ) IF( IP.NE.I ) THEN CALL ZSWAP( N-K, A( I, K+1 ), LDA, $ A( IP, K+1 ), LDA ) END IF END DO END IF * * Decrease K and return to the start of the main loop * K = K - KB GO TO 10 * * This label is the exit from main loop over K decreasing * from N to 1 in steps of KB * 15 CONTINUE * ELSE * * Factorize A as L*D*L**T using the lower triangle of A * * K is the main loop index, increasing from 1 to N in steps of * KB, where KB is the number of columns factorized by ZLASYF_RK; * KB is either NB or NB-1, or N-K+1 for the last block * K = 1 20 CONTINUE * * If K > N, exit from loop * IF( K.GT.N ) $ GO TO 35 * IF( K.LE.N-NB ) THEN * * Factorize columns k:k+kb-1 of A and use blocked code to * update columns k+kb:n * CALL ZLASYF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, $ E( K ), $ IPIV( K ), WORK, LDWORK, IINFO ) ELSE * * Use unblocked code to factorize columns k:n of A * CALL ZSYTF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ), $ IPIV( K ), IINFO ) KB = N - K + 1 * END IF * * Set INFO on the first occurrence of a zero pivot * IF( INFO.EQ.0 .AND. IINFO.GT.0 ) $ INFO = IINFO + K - 1 * * Adjust IPIV * DO I = K, K + KB - 1 IF( IPIV( I ).GT.0 ) THEN IPIV( I ) = IPIV( I ) + K - 1 ELSE IPIV( I ) = IPIV( I ) - K + 1 END IF END DO * * Apply permutations to the leading panel 1:k-1 * * Read IPIV from the last block factored, i.e. * indices k:k+kb-1 and apply row permutations to the * first k-1 colunms 1:k-1 before that block * (We can do the simple loop over IPIV with increment 1, * since the ABS value of IPIV( I ) represents the row index * of the interchange with row i in both 1x1 and 2x2 pivot cases) * IF( K.GT.1 ) THEN DO I = K, ( K + KB - 1 ), 1 IP = ABS( IPIV( I ) ) IF( IP.NE.I ) THEN CALL ZSWAP( K-1, A( I, 1 ), LDA, $ A( IP, 1 ), LDA ) END IF END DO END IF * * Increase K and return to the start of the main loop * K = K + KB GO TO 20 * * This label is the exit from main loop over K increasing * from 1 to N in steps of KB * 35 CONTINUE * * End Lower * END IF * WORK( 1 ) = LWKOPT RETURN * * End of ZSYTRF_RK * END