numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ztgsen.f | 26976B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
*> \brief \b ZTGSEN * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZTGSEN + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, * ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, * WORK, LWORK, IWORK, LIWORK, INFO ) * * .. Scalar Arguments .. * LOGICAL WANTQ, WANTZ * INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, * $ M, N * DOUBLE PRECISION PL, PR * .. * .. Array Arguments .. * LOGICAL SELECT( * ) * INTEGER IWORK( * ) * DOUBLE PRECISION DIF( * ) * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), * $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZTGSEN reorders the generalized Schur decomposition of a complex *> matrix pair (A, B) (in terms of an unitary equivalence trans- *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues *> appears in the leading diagonal blocks of the pair (A,B). The leading *> columns of Q and Z form unitary bases of the corresponding left and *> right eigenspaces (deflating subspaces). (A, B) must be in *> generalized Schur canonical form, that is, A and B are both upper *> triangular. *> *> ZTGSEN also computes the generalized eigenvalues *> *> w(j)= ALPHA(j) / BETA(j) *> *> of the reordered matrix pair (A, B). *> *> Optionally, the routine computes estimates of reciprocal condition *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to *> the selected cluster and the eigenvalues outside the cluster, resp., *> and norms of "projections" onto left and right eigenspaces w.r.t. *> the selected cluster in the (1,1)-block. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] IJOB *> \verbatim *> IJOB is INTEGER *> Specifies whether condition numbers are required for the *> cluster of eigenvalues (PL and PR) or the deflating subspaces *> (Difu and Difl): *> =0: Only reorder w.r.t. SELECT. No extras. *> =1: Reciprocal of norms of "projections" onto left and right *> eigenspaces w.r.t. the selected cluster (PL and PR). *> =2: Upper bounds on Difu and Difl. F-norm-based estimate *> (DIF(1:2)). *> =3: Estimate of Difu and Difl. 1-norm-based estimate *> (DIF(1:2)). *> About 5 times as expensive as IJOB = 2. *> =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic *> version to get it all. *> =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) *> \endverbatim *> *> \param[in] WANTQ *> \verbatim *> WANTQ is LOGICAL *> .TRUE. : update the left transformation matrix Q; *> .FALSE.: do not update Q. *> \endverbatim *> *> \param[in] WANTZ *> \verbatim *> WANTZ is LOGICAL *> .TRUE. : update the right transformation matrix Z; *> .FALSE.: do not update Z. *> \endverbatim *> *> \param[in] SELECT *> \verbatim *> SELECT is LOGICAL array, dimension (N) *> SELECT specifies the eigenvalues in the selected cluster. To *> select an eigenvalue w(j), SELECT(j) must be set to *> .TRUE.. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX*16 array, dimension(LDA,N) *> On entry, the upper triangular matrix A, in generalized *> Schur canonical form. *> On exit, A is overwritten by the reordered matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX*16 array, dimension(LDB,N) *> On entry, the upper triangular matrix B, in generalized *> Schur canonical form. *> On exit, B is overwritten by the reordered matrix B. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is COMPLEX*16 array, dimension (N) *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is COMPLEX*16 array, dimension (N) *> *> The diagonal elements of A and B, respectively, *> when the pair (A,B) has been reduced to generalized Schur *> form. ALPHA(i)/BETA(i) i=1,...,N are the generalized *> eigenvalues. *> \endverbatim *> *> \param[in,out] Q *> \verbatim *> Q is COMPLEX*16 array, dimension (LDQ,N) *> On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. *> On exit, Q has been postmultiplied by the left unitary *> transformation matrix which reorder (A, B); The leading M *> columns of Q form orthonormal bases for the specified pair of *> left eigenspaces (deflating subspaces). *> If WANTQ = .FALSE., Q is not referenced. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= 1. *> If WANTQ = .TRUE., LDQ >= N. *> \endverbatim *> *> \param[in,out] Z *> \verbatim *> Z is COMPLEX*16 array, dimension (LDZ,N) *> On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. *> On exit, Z has been postmultiplied by the left unitary *> transformation matrix which reorder (A, B); The leading M *> columns of Z form orthonormal bases for the specified pair of *> left eigenspaces (deflating subspaces). *> If WANTZ = .FALSE., Z is not referenced. *> \endverbatim *> *> \param[in] LDZ *> \verbatim *> LDZ is INTEGER *> The leading dimension of the array Z. LDZ >= 1. *> If WANTZ = .TRUE., LDZ >= N. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The dimension of the specified pair of left and right *> eigenspaces, (deflating subspaces) 0 <= M <= N. *> \endverbatim *> *> \param[out] PL *> \verbatim *> PL is DOUBLE PRECISION *> \endverbatim *> *> \param[out] PR *> \verbatim *> PR is DOUBLE PRECISION *> *> If IJOB = 1, 4 or 5, PL, PR are lower bounds on the *> reciprocal of the norm of "projections" onto left and right *> eigenspace with respect to the selected cluster. *> 0 < PL, PR <= 1. *> If M = 0 or M = N, PL = PR = 1. *> If IJOB = 0, 2 or 3 PL, PR are not referenced. *> \endverbatim *> *> \param[out] DIF *> \verbatim *> DIF is DOUBLE PRECISION array, dimension (2). *> If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. *> If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on *> Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based *> estimates of Difu and Difl, computed using reversed *> communication with ZLACN2. *> If M = 0 or N, DIF(1:2) = F-norm([A, B]). *> If IJOB = 0 or 1, DIF is not referenced. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= 1 *> If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M) *> If IJOB = 3 or 5, LWORK >= 4*M*(N-M) *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER *> The dimension of the array IWORK. LIWORK >= 1. *> If IJOB = 1, 2 or 4, LIWORK >= N+2; *> If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M)); *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the IWORK array, *> returns this value as the first entry of the IWORK array, and *> no error message related to LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> =0: Successful exit. *> <0: If INFO = -i, the i-th argument had an illegal value. *> =1: Reordering of (A, B) failed because the transformed *> matrix pair (A, B) would be too far from generalized *> Schur form; the problem is very ill-conditioned. *> (A, B) may have been partially reordered. *> If requested, 0 is returned in DIF(*), PL and PR. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tgsen * *> \par Further Details: * ===================== *> *> \verbatim *> *> ZTGSEN first collects the selected eigenvalues by computing unitary *> U and W that move them to the top left corner of (A, B). In other *> words, the selected eigenvalues are the eigenvalues of (A11, B11) in *> *> U**H*(A, B)*W = (A11 A12) (B11 B12) n1 *> ( 0 A22),( 0 B22) n2 *> n1 n2 n1 n2 *> *> where N = n1+n2 and U**H means the conjugate transpose of U. The first *> n1 columns of U and W span the specified pair of left and right *> eigenspaces (deflating subspaces) of (A, B). *> *> If (A, B) has been obtained from the generalized real Schur *> decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the *> reordered generalized Schur form of (C, D) is given by *> *> (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H, *> *> and the first n1 columns of Q*U and Z*W span the corresponding *> deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). *> *> Note that if the selected eigenvalue is sufficiently ill-conditioned, *> then its value may differ significantly from its value before *> reordering. *> *> The reciprocal condition numbers of the left and right eigenspaces *> spanned by the first n1 columns of U and W (or Q*U and Z*W) may *> be returned in DIF(1:2), corresponding to Difu and Difl, resp. *> *> The Difu and Difl are defined as: *> *> Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) *> and *> Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], *> *> where sigma-min(Zu) is the smallest singular value of the *> (2*n1*n2)-by-(2*n1*n2) matrix *> *> Zu = [ kron(In2, A11) -kron(A22**H, In1) ] *> [ kron(In2, B11) -kron(B22**H, In1) ]. *> *> Here, Inx is the identity matrix of size nx and A22**H is the *> conjugate transpose of A22. kron(X, Y) is the Kronecker product between *> the matrices X and Y. *> *> When DIF(2) is small, small changes in (A, B) can cause large changes *> in the deflating subspace. An approximate (asymptotic) bound on the *> maximum angular error in the computed deflating subspaces is *> *> EPS * norm((A, B)) / DIF(2), *> *> where EPS is the machine precision. *> *> The reciprocal norm of the projectors on the left and right *> eigenspaces associated with (A11, B11) may be returned in PL and PR. *> They are computed as follows. First we compute L and R so that *> P*(A, B)*Q is block diagonal, where *> *> P = ( I -L ) n1 Q = ( I R ) n1 *> ( 0 I ) n2 and ( 0 I ) n2 *> n1 n2 n1 n2 *> *> and (L, R) is the solution to the generalized Sylvester equation *> *> A11*R - L*A22 = -A12 *> B11*R - L*B22 = -B12 *> *> Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). *> An approximate (asymptotic) bound on the average absolute error of *> the selected eigenvalues is *> *> EPS * norm((A, B)) / PL. *> *> There are also global error bounds which valid for perturbations up *> to a certain restriction: A lower bound (x) on the smallest *> F-norm(E,F) for which an eigenvalue of (A11, B11) may move and *> coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), *> (i.e. (A + E, B + F), is *> *> x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). *> *> An approximate bound on x can be computed from DIF(1:2), PL and PR. *> *> If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed *> (L', R') and unperturbed (L, R) left and right deflating subspaces *> associated with the selected cluster in the (1,1)-blocks can be *> bounded as *> *> max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) *> max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) *> *> See LAPACK User's Guide section 4.11 or the following references *> for more information. *> *> Note that if the default method for computing the Frobenius-norm- *> based estimate DIF is not wanted (see ZLATDF), then the parameter *> IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF *> (IJOB = 2 will be used)). See ZTGSYL for more details. *> \endverbatim * *> \par Contributors: * ================== *> *> Bo Kagstrom and Peter Poromaa, Department of Computing Science, *> Umea University, S-901 87 Umea, Sweden. * *> \par References: * ================ *> *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. *> \n *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition *> Estimation: Theory, Algorithms and Software, Report *> UMINF - 94.04, Department of Computing Science, Umea University, *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. *> To appear in Numerical Algorithms, 1996. *> \n *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software *> for Solving the Generalized Sylvester Equation and Estimating the *> Separation between Regular Matrix Pairs, Report UMINF - 93.23, *> Department of Computing Science, Umea University, S-901 87 Umea, *> Sweden, December 1993, Revised April 1994, Also as LAPACK working *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, *> 1996. *> * ===================================================================== SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, $ LDB, $ ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, $ WORK, LWORK, IWORK, LIWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL WANTQ, WANTZ INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK, $ M, N DOUBLE PRECISION PL, PR * .. * .. Array Arguments .. LOGICAL SELECT( * ) INTEGER IWORK( * ) DOUBLE PRECISION DIF( * ) COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), $ BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER IDIFJB PARAMETER ( IDIFJB = 3 ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP INTEGER I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2, $ N1, N2 DOUBLE PRECISION DSCALE, DSUM, RDSCAL, SAFMIN COMPLEX*16 TEMP1, TEMP2 * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Subroutines .. EXTERNAL XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, $ ZTGEXC, $ ZTGSYL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCMPLX, DCONJG, MAX, SQRT * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Executable Statements .. * * Decode and test the input parameters * INFO = 0 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) * IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -5 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -9 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN INFO = -13 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -15 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGSEN', -INFO ) RETURN END IF * IERR = 0 * WANTP = IJOB.EQ.1 .OR. IJOB.GE.4 WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4 WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5 WANTD = WANTD1 .OR. WANTD2 * * Set M to the dimension of the specified pair of deflating * subspaces. * M = 0 IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN DO 10 K = 1, N ALPHA( K ) = A( K, K ) BETA( K ) = B( K, K ) IF( K.LT.N ) THEN IF( SELECT( K ) ) $ M = M + 1 ELSE IF( SELECT( N ) ) $ M = M + 1 END IF 10 CONTINUE END IF * IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN LWMIN = MAX( 1, 2*M*( N-M ) ) LIWMIN = MAX( 1, N+2 ) ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN LWMIN = MAX( 1, 4*M*( N-M ) ) LIWMIN = MAX( 1, 2*M*( N-M ), N+2 ) ELSE LWMIN = 1 LIWMIN = 1 END IF * WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -21 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN INFO = -23 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGSEN', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible. * IF( M.EQ.N .OR. M.EQ.0 ) THEN IF( WANTP ) THEN PL = ONE PR = ONE END IF IF( WANTD ) THEN DSCALE = ZERO DSUM = ONE DO 20 I = 1, N CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM ) CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM ) 20 CONTINUE DIF( 1 ) = DSCALE*SQRT( DSUM ) DIF( 2 ) = DIF( 1 ) END IF GO TO 70 END IF * * Get machine constant * SAFMIN = DLAMCH( 'S' ) * * Collect the selected blocks at the top-left corner of (A, B). * KS = 0 DO 30 K = 1, N SWAP = SELECT( K ) IF( SWAP ) THEN KS = KS + 1 * * Swap the K-th block to position KS. Compute unitary Q * and Z that will swap adjacent diagonal blocks in (A, B). * IF( K.NE.KS ) $ CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, $ Z, $ LDZ, K, KS, IERR ) * IF( IERR.GT.0 ) THEN * * Swap is rejected: exit. * INFO = 1 IF( WANTP ) THEN PL = ZERO PR = ZERO END IF IF( WANTD ) THEN DIF( 1 ) = ZERO DIF( 2 ) = ZERO END IF GO TO 70 END IF END IF 30 CONTINUE IF( WANTP ) THEN * * Solve generalized Sylvester equation for R and L: * A11 * R - L * A22 = A12 * B11 * R - L * B22 = B12 * N1 = M N2 = N - M I = N1 + 1 CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 ) CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, $ WORK( N1*N2+1 ), $ N1 ) IJB = 0 CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK, $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1, $ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ), $ LWORK-2*N1*N2, IWORK, IERR ) * * Estimate the reciprocal of norms of "projections" onto * left and right eigenspaces * RDSCAL = ZERO DSUM = ONE CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM ) PL = RDSCAL*SQRT( DSUM ) IF( PL.EQ.ZERO ) THEN PL = ONE ELSE PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) ) END IF RDSCAL = ZERO DSUM = ONE CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM ) PR = RDSCAL*SQRT( DSUM ) IF( PR.EQ.ZERO ) THEN PR = ONE ELSE PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) ) END IF END IF IF( WANTD ) THEN * * Compute estimates Difu and Difl. * IF( WANTD1 ) THEN N1 = M N2 = N - M I = N1 + 1 IJB = IDIFJB * * Frobenius norm-based Difu estimate. * CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, $ WORK, $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), $ N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ), $ LWORK-2*N1*N2, IWORK, IERR ) * * Frobenius norm-based Difl estimate. * CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, $ WORK, $ N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ), $ N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ), $ LWORK-2*N1*N2, IWORK, IERR ) ELSE * * Compute 1-norm-based estimates of Difu and Difl using * reversed communication with ZLACN2. In each step a * generalized Sylvester equation or a transposed variant * is solved. * KASE = 0 N1 = M N2 = N - M I = N1 + 1 IJB = 0 MN2 = 2*N1*N2 * * 1-norm-based estimate of Difu. * 40 CONTINUE CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE, $ ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Solve generalized Sylvester equation * CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), $ LDA, $ WORK, N1, B, LDB, B( I, I ), LDB, $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ), $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK, $ IERR ) ELSE * * Solve the transposed variant. * CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), $ LDA, $ WORK, N1, B, LDB, B( I, I ), LDB, $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ), $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK, $ IERR ) END IF GO TO 40 END IF DIF( 1 ) = DSCALE / DIF( 1 ) * * 1-norm-based estimate of Difl. * 50 CONTINUE CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE, $ ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Solve generalized Sylvester equation * CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, $ LDA, $ WORK, N2, B( I, I ), LDB, B, LDB, $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ), $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK, $ IERR ) ELSE * * Solve the transposed variant. * CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, $ LDA, $ WORK, N2, B, LDB, B( I, I ), LDB, $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ), $ WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK, $ IERR ) END IF GO TO 50 END IF DIF( 2 ) = DSCALE / DIF( 2 ) END IF END IF * * If B(K,K) is complex, make it real and positive (normalization * of the generalized Schur form) and Store the generalized * eigenvalues of reordered pair (A, B) * DO 60 K = 1, N DSCALE = ABS( B( K, K ) ) IF( DSCALE.GT.SAFMIN ) THEN TEMP1 = DCONJG( B( K, K ) / DSCALE ) TEMP2 = B( K, K ) / DSCALE B( K, K ) = DSCALE CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB ) CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA ) IF( WANTQ ) $ CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 ) ELSE B( K, K ) = DCMPLX( ZERO, ZERO ) END IF * ALPHA( K ) = A( K, K ) BETA( K ) = B( K, K ) * 60 CONTINUE * 70 CONTINUE * WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * RETURN * * End of ZTGSEN * END