numeric-linalg
Educational material on the SciPy implementation of numerical linear algebra algorithms
Name | Size | Mode | |
.. | |||
lapack/SRC/ztgsy2.f | 15287B | -rw-r--r-- |
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
*> \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm). * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ZTGSY2 + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, * LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, * INFO ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N * DOUBLE PRECISION RDSCAL, RDSUM, SCALE * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), * $ D( LDD, * ), E( LDE, * ), F( LDF, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZTGSY2 solves the generalized Sylvester equation *> *> A * R - L * B = scale * C (1) *> D * R - L * E = scale * F *> *> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, *> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, *> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular *> (i.e., (A,D) and (B,E) in generalized Schur form). *> *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output *> scaling factor chosen to avoid overflow. *> *> In matrix notation solving equation (1) corresponds to solve *> Zx = scale * b, where Z is defined as *> *> Z = [ kron(In, A) -kron(B**H, Im) ] (2) *> [ kron(In, D) -kron(E**H, Im) ], *> *> Ik is the identity matrix of size k and X**H is the conjugate transpose of X. *> kron(X, Y) is the Kronecker product between the matrices X and Y. *> *> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b *> is solved for, which is equivalent to solve for R and L in *> *> A**H * R + D**H * L = scale * C (3) *> R * B**H + L * E**H = scale * -F *> *> This case is used to compute an estimate of Dif[(A, D), (B, E)] = *> = sigma_min(Z) using reverse communication with ZLACON. *> *> ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL *> of an upper bound on the separation between to matrix pairs. Then *> the input (A, D), (B, E) are sub-pencils of two matrix pairs in *> ZTGSYL. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': solve the generalized Sylvester equation (1). *> = 'T': solve the 'transposed' system (3). *> \endverbatim *> *> \param[in] IJOB *> \verbatim *> IJOB is INTEGER *> Specifies what kind of functionality to be performed. *> =0: solve (1) only. *> =1: A contribution from this subsystem to a Frobenius *> norm-based estimate of the separation between two matrix *> pairs is computed. (look ahead strategy is used). *> =2: A contribution from this subsystem to a Frobenius *> norm-based estimate of the separation between two matrix *> pairs is computed. (DGECON on sub-systems is used.) *> Not referenced if TRANS = 'T'. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> On entry, M specifies the order of A and D, and the row *> dimension of C, F, R and L. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of B and E, and the column *> dimension of C, F, R and L. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA, M) *> On entry, A contains an upper triangular matrix. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the matrix A. LDA >= max(1, M). *> \endverbatim *> *> \param[in] B *> \verbatim *> B is COMPLEX*16 array, dimension (LDB, N) *> On entry, B contains an upper triangular matrix. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the matrix B. LDB >= max(1, N). *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX*16 array, dimension (LDC, N) *> On entry, C contains the right-hand-side of the first matrix *> equation in (1). *> On exit, if IJOB = 0, C has been overwritten by the solution *> R. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the matrix C. LDC >= max(1, M). *> \endverbatim *> *> \param[in] D *> \verbatim *> D is COMPLEX*16 array, dimension (LDD, M) *> On entry, D contains an upper triangular matrix. *> \endverbatim *> *> \param[in] LDD *> \verbatim *> LDD is INTEGER *> The leading dimension of the matrix D. LDD >= max(1, M). *> \endverbatim *> *> \param[in] E *> \verbatim *> E is COMPLEX*16 array, dimension (LDE, N) *> On entry, E contains an upper triangular matrix. *> \endverbatim *> *> \param[in] LDE *> \verbatim *> LDE is INTEGER *> The leading dimension of the matrix E. LDE >= max(1, N). *> \endverbatim *> *> \param[in,out] F *> \verbatim *> F is COMPLEX*16 array, dimension (LDF, N) *> On entry, F contains the right-hand-side of the second matrix *> equation in (1). *> On exit, if IJOB = 0, F has been overwritten by the solution *> L. *> \endverbatim *> *> \param[in] LDF *> \verbatim *> LDF is INTEGER *> The leading dimension of the matrix F. LDF >= max(1, M). *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is DOUBLE PRECISION *> On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions *> R and L (C and F on entry) will hold the solutions to a *> slightly perturbed system but the input matrices A, B, D and *> E have not been changed. If SCALE = 0, R and L will hold the *> solutions to the homogeneous system with C = F = 0. *> Normally, SCALE = 1. *> \endverbatim *> *> \param[in,out] RDSUM *> \verbatim *> RDSUM is DOUBLE PRECISION *> On entry, the sum of squares of computed contributions to *> the Dif-estimate under computation by ZTGSYL, where the *> scaling factor RDSCAL (see below) has been factored out. *> On exit, the corresponding sum of squares updated with the *> contributions from the current sub-system. *> If TRANS = 'T' RDSUM is not touched. *> NOTE: RDSUM only makes sense when ZTGSY2 is called by *> ZTGSYL. *> \endverbatim *> *> \param[in,out] RDSCAL *> \verbatim *> RDSCAL is DOUBLE PRECISION *> On entry, scaling factor used to prevent overflow in RDSUM. *> On exit, RDSCAL is updated w.r.t. the current contributions *> in RDSUM. *> If TRANS = 'T', RDSCAL is not touched. *> NOTE: RDSCAL only makes sense when ZTGSY2 is called by *> ZTGSYL. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> On exit, if INFO is set to *> =0: Successful exit *> <0: If INFO = -i, input argument number i is illegal. *> >0: The matrix pairs (A, D) and (B, E) have common or very *> close eigenvalues. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup tgsy2 * *> \par Contributors: * ================== *> *> Bo Kagstrom and Peter Poromaa, Department of Computing Science, *> Umea University, S-901 87 Umea, Sweden. * * ===================================================================== SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, $ D, $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, $ INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N DOUBLE PRECISION RDSCAL, RDSUM, SCALE * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), $ D( LDD, * ), E( LDE, * ), F( LDF, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE INTEGER LDZ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 ) * .. * .. Local Scalars .. LOGICAL NOTRAN INTEGER I, IERR, J, K DOUBLE PRECISION SCALOC COMPLEX*16 ALPHA * .. * .. Local Arrays .. INTEGER IPIV( LDZ ), JPIV( LDZ ) COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, $ ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, MAX * .. * .. Executable Statements .. * * Decode and test input parameters * INFO = 0 IERR = 0 NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -1 ELSE IF( NOTRAN ) THEN IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN INFO = -2 END IF END IF IF( INFO.EQ.0 ) THEN IF( M.LE.0 ) THEN INFO = -3 ELSE IF( N.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDD.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDE.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDF.LT.MAX( 1, M ) ) THEN INFO = -16 END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGSY2', -INFO ) RETURN END IF * IF( NOTRAN ) THEN * * Solve (I, J) - system * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) * for I = M, M - 1, ..., 1; J = 1, 2, ..., N * SCALE = ONE SCALOC = ONE DO 30 J = 1, N DO 20 I = M, 1, -1 * * Build 2 by 2 system * Z( 1, 1 ) = A( I, I ) Z( 2, 1 ) = D( I, I ) Z( 1, 2 ) = -B( J, J ) Z( 2, 2 ) = -E( J, J ) * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR IF( IJOB.EQ.0 ) THEN CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 10 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ C( 1, K ), 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ F( 1, K ), 1 ) 10 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL, $ IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * IF( I.GT.1 ) THEN ALPHA = -RHS( 1 ) CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), $ 1 ) CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), $ 1 ) END IF IF( J.LT.N ) THEN CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB, $ C( I, J+1 ), LDC ) CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE, $ F( I, J+1 ), LDF ) END IF * 20 CONTINUE 30 CONTINUE ELSE * * Solve transposed (I, J) - system: * A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J) * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) * for I = 1, 2, ..., M, J = N, N - 1, ..., 1 * SCALE = ONE SCALOC = ONE DO 80 I = 1, M DO 70 J = N, 1, -1 * * Build 2 by 2 system Z**H * Z( 1, 1 ) = DCONJG( A( I, I ) ) Z( 2, 1 ) = -DCONJG( B( J, J ) ) Z( 1, 2 ) = DCONJG( D( I, I ) ) Z( 2, 2 ) = -DCONJG( E( J, J ) ) * * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z**H * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 40 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, $ K ), $ 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, $ K ), $ 1 ) 40 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * DO 50 K = 1, J - 1 F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) + $ RHS( 2 )*DCONJG( E( K, J ) ) 50 CONTINUE DO 60 K = I + 1, M C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) - $ DCONJG( D( I, K ) )*RHS( 2 ) 60 CONTINUE * 70 CONTINUE 80 CONTINUE END IF RETURN * * End of ZTGSY2 * END