numeric-linalg

Educational material on the SciPy implementation of numerical linear algebra algorithms

NameSizeMode
..
lapack/SRC/ztptrs.f 6618B -rw-r--r--
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
*> \brief \b ZTPTRS
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZTPTRS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptrs.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptrs.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptrs.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            INFO, LDB, N, NRHS
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         AP( * ), B( LDB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZTPTRS solves a triangular system of the form
*>
*>    A * X = B,  A**T * X = B,  or  A**H * X = B,
*>
*> where A is a triangular matrix of order N stored in packed format, and B is an N-by-NRHS matrix.
*>
*> This subroutine verifies that A is nonsingular, but callers should note that only exact
*> singularity is detected. It is conceivable for one or more diagonal elements of A to be
*> subnormally tiny numbers without this subroutine signalling an error.
*>
*> If a possible loss of numerical precision due to near-singular matrices is a concern, the
*> caller should verify that A is nonsingular within some tolerance before calling this subroutine.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  A is upper triangular;
*>          = 'L':  A is lower triangular.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          = 'N':  A is non-unit triangular;
*>          = 'U':  A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrix B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*>          The upper or lower triangular matrix A, packed columnwise in
*>          a linear array.  The j-th column of A is stored in the array
*>          AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit, if INFO = 0, the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, the i-th diagonal element of A is exactly zero,
*>                indicating that the matrix is singular and the
*>                solutions X have not been computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup tptrs
*
*  =====================================================================
      SUBROUTINE ZTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB,
     $                   INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            INFO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AP( * ), B( LDB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, UPPER
      INTEGER            J, JC
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZTPSV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOUNIT = LSAME( DIAG, 'N' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
     $         LSAME( TRANS, 'T' ) .AND.
     $                .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTPTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check for singularity.
*
      IF( NOUNIT ) THEN
         IF( UPPER ) THEN
            JC = 1
            DO 10 INFO = 1, N
               IF( AP( JC+INFO-1 ).EQ.ZERO )
     $            RETURN
               JC = JC + INFO
   10       CONTINUE
         ELSE
            JC = 1
            DO 20 INFO = 1, N
               IF( AP( JC ).EQ.ZERO )
     $            RETURN
               JC = JC + N - INFO + 1
   20       CONTINUE
         END IF
      END IF
      INFO = 0
*
*     Solve  A * x = b,  A**T * x = b,  or  A**H * x = b.
*
      DO 30 J = 1, NRHS
         CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, B( 1, J ), 1 )
   30 CONTINUE
*
      RETURN
*
*     End of ZTPTRS
*
      END